Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in plant medicine production

25.06.2008
A research team of scientists from Wageningen University and Research Centre in the Netherlands has succeeded in further unravelling and manipulating the glycosylation of proteins in plants.

This is the result of the research soon to be published in the renowned scientific magazine The Plant Cell. The scientists expect that this knowledge will allow plants to be applied more often in the production of therapeutic proteins, an important type of medicine.

The discovery fits in with technology developed by the Wageningen UR research institute Plant Research International for the production of biopharmaceuticals in plants.

Proteins in plants, animals and people are equipped with various sugar chains in a process known as glycosylation. The sugar chains are of significance to the functioning of many proteins. Moreover, their identity and uniformity is crucial to the quality of therapeutic proteins.

... more about:
»Protein »glycosylation

The glycosylation of proteins in plants, people and animals basically consists of three stages. Initially sugar chains are constructed, which then attach to the protein in specific locations. Finally, the sugar chains are further modified as specific sugars are attached to the chain.

“We are the first institute in the world to identify a gene in plants that is involved in the construction of these sugar chains, the first stage in glycosylation,” says scientist Maurice Henquet. “It seems that the chains become increasingly uniform as the expression of this gene is reduced.” One type of chain, a relatively simple one, is mainly developed. The sugar chains which are attached to the proteins are therefore a better starting point for making adjustments that are designed to optimise the biological function as medicine.

“From now on we will be able to improve the manipulation of glycosylation,” Henquet continues. “And plants will become even more suitable for medicine production.”

Jac Niessen | alfa
Further information:
http://www.wur.nl
http://www.plantcell.org/cgi/content/short/tpc.108.060731?keytype=ref&ijkey=Hh0z97yxOvwU1dE

Further reports about: Protein glycosylation

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>