Breakthrough in plant medicine production

This is the result of the research soon to be published in the renowned scientific magazine The Plant Cell. The scientists expect that this knowledge will allow plants to be applied more often in the production of therapeutic proteins, an important type of medicine.

The discovery fits in with technology developed by the Wageningen UR research institute Plant Research International for the production of biopharmaceuticals in plants.

Proteins in plants, animals and people are equipped with various sugar chains in a process known as glycosylation. The sugar chains are of significance to the functioning of many proteins. Moreover, their identity and uniformity is crucial to the quality of therapeutic proteins.

The glycosylation of proteins in plants, people and animals basically consists of three stages. Initially sugar chains are constructed, which then attach to the protein in specific locations. Finally, the sugar chains are further modified as specific sugars are attached to the chain.

“We are the first institute in the world to identify a gene in plants that is involved in the construction of these sugar chains, the first stage in glycosylation,” says scientist Maurice Henquet. “It seems that the chains become increasingly uniform as the expression of this gene is reduced.” One type of chain, a relatively simple one, is mainly developed. The sugar chains which are attached to the proteins are therefore a better starting point for making adjustments that are designed to optimise the biological function as medicine.

“From now on we will be able to improve the manipulation of glycosylation,” Henquet continues. “And plants will become even more suitable for medicine production.”

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors