Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Create Molecule That Nudges Nerve Stem Cells to Mature

Inspired by a chance discovery during another experiment, researchers at UT Southwestern Medical Center have created a small molecule that stimulates nerve stem cells to begin maturing into nerve cells in culture.

This finding might someday allow a person’s own nerve stem cells to be grown outside the body, stimulated into maturity, and then re-implanted as working nerve cells to treat various diseases, the researchers said.

“This provides a critical starting point for neuro-regenerative medicine and brain cancer chemotherapy,” said Dr. Jenny Hsieh, assistant professor of molecular biology and senior author of the paper, which appears online today and in the June 17 issue of Nature Chemical Biology.

The creation of the molecule allowed the researchers to uncover some of the biochemical steps that happen as nerve cells mature. It also showed that large-scale screening of compounds can provide starting points for developing drugs to treat disorders such as Huntington’s disease, traumatic brain injury or cancer.

... more about:
»Hsieh »Isx-9 »Molecule »Nerve

The scientists began this project as a result of a separate study in which they were screening 147,000 compounds to see which could stimulate stem cells cultivated from rodent embryos to become heart cells. Unexpectedly, five molecules stimulated the cells to transform into forms resembling nerve cells. The researchers then created a variation of these molecules, a new compound called Isx-9 (for isoxazole-9). Isx-9 was easier to use than its initially discovered relatives because it worked at a much lower concentration and also dissolved more easily in water.

“It was completely serendipitous that we uncovered this neurogenic [nerve-creating] small molecule,” Dr. Hsieh said. “I think it’s one of the most powerful neurogenic small molecules on the planet. In theory, this molecule could provoke full maturation, to the point that the new nerve cells could fire, generating the electrical signals needed for full functioning.”

Nerve stem cells live in scattered groups in various areas of the brain. They are capable of becoming several different types of cells, not all of which are nerve cells.

In the study, rodent nerve stem cells from an area of the brain called the hippocampus were cultured with Isx-9. They clustered together and developed spiky appendages called neurites, which typically happens when nerve cells are grown in culture.

Isx-9 also prevented the stem cells from developing into non-nerve cells and was more potent than other neurogenic substances in stimulating nerve-cell development. The molecule generated two to three times more nerve cells than other commonly used compounds.

Neuroscientists believed for decades that the adult mammalian brain could not grow new nerve cells. Instead, they thought, learning and memory were strictly a matter of the brain making new connections between existing cells.

It is now known, however, that the brain constantly creates new nerve cells. In the hippocampus, which is involved with learning and memory, stem cells mature into full-blown nerve cells at a rate of thousands a day, Dr. Hsieh said.

Scientists know that when a mature nerve cell sends a chemical signal called a neurotransmitter to a stem cell, the immature cell begins to mature, but they don’t know what biochemical pathways or genes are involved, Dr. Hsieh said.

“The big gap in our knowledge is how to control these stem cells,” she said.

Isx-9 appeared to act like a neurotransmitter-like signal on the nerve stem cells, the researchers found. By culturing the stem cells with the compound, the scientists identified a possible biochemical pathway by which stem cells begin to become nerve cells.

The researchers next plan to test Isx-9 on a large number of different combinations of RNA, the chemical cousin of DNA, to see on which genes the compound might be working. They have also applied for a patent on Isx-9 and its relatives.

Other UT Southwestern researchers involved in the study were Dr. Jay Schneider, assistant professor of internal medicine; Dr. Zhengliang Gao, postdoctoral researcher in molecular biology; Dr. Shijie Li, postdoctoral researcher in molecular genetics; Midhat Farooqi, a student in the Medical Scientist Training Program; Dr. Tie-Shan Tang, instructor of physiology; Dr. Ilya Bezprozvanny, professor of physiology; and Dr. Douglas Frantz, assistant professor of biochemistry.

The work was supported by the Haberecht Wild-Hare Idea Program, the Donald W. Reynolds Foundation, the National Institute of Neurological Disorders and Stroke, the Ellison Medical Foundation, the Welch Foundation and the UT Southwestern President’s Research Council.

Dr. Jenny Hsieh --,2356,75845,00.html

Aline McKenzie | newswise
Further information:

Further reports about: Hsieh Isx-9 Molecule Nerve

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>