Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Create Molecule That Nudges Nerve Stem Cells to Mature

16.06.2008
Inspired by a chance discovery during another experiment, researchers at UT Southwestern Medical Center have created a small molecule that stimulates nerve stem cells to begin maturing into nerve cells in culture.

This finding might someday allow a person’s own nerve stem cells to be grown outside the body, stimulated into maturity, and then re-implanted as working nerve cells to treat various diseases, the researchers said.

“This provides a critical starting point for neuro-regenerative medicine and brain cancer chemotherapy,” said Dr. Jenny Hsieh, assistant professor of molecular biology and senior author of the paper, which appears online today and in the June 17 issue of Nature Chemical Biology.

The creation of the molecule allowed the researchers to uncover some of the biochemical steps that happen as nerve cells mature. It also showed that large-scale screening of compounds can provide starting points for developing drugs to treat disorders such as Huntington’s disease, traumatic brain injury or cancer.

... more about:
»Hsieh »Isx-9 »Molecule »Nerve

The scientists began this project as a result of a separate study in which they were screening 147,000 compounds to see which could stimulate stem cells cultivated from rodent embryos to become heart cells. Unexpectedly, five molecules stimulated the cells to transform into forms resembling nerve cells. The researchers then created a variation of these molecules, a new compound called Isx-9 (for isoxazole-9). Isx-9 was easier to use than its initially discovered relatives because it worked at a much lower concentration and also dissolved more easily in water.

“It was completely serendipitous that we uncovered this neurogenic [nerve-creating] small molecule,” Dr. Hsieh said. “I think it’s one of the most powerful neurogenic small molecules on the planet. In theory, this molecule could provoke full maturation, to the point that the new nerve cells could fire, generating the electrical signals needed for full functioning.”

Nerve stem cells live in scattered groups in various areas of the brain. They are capable of becoming several different types of cells, not all of which are nerve cells.

In the study, rodent nerve stem cells from an area of the brain called the hippocampus were cultured with Isx-9. They clustered together and developed spiky appendages called neurites, which typically happens when nerve cells are grown in culture.

Isx-9 also prevented the stem cells from developing into non-nerve cells and was more potent than other neurogenic substances in stimulating nerve-cell development. The molecule generated two to three times more nerve cells than other commonly used compounds.

Neuroscientists believed for decades that the adult mammalian brain could not grow new nerve cells. Instead, they thought, learning and memory were strictly a matter of the brain making new connections between existing cells.

It is now known, however, that the brain constantly creates new nerve cells. In the hippocampus, which is involved with learning and memory, stem cells mature into full-blown nerve cells at a rate of thousands a day, Dr. Hsieh said.

Scientists know that when a mature nerve cell sends a chemical signal called a neurotransmitter to a stem cell, the immature cell begins to mature, but they don’t know what biochemical pathways or genes are involved, Dr. Hsieh said.

“The big gap in our knowledge is how to control these stem cells,” she said.

Isx-9 appeared to act like a neurotransmitter-like signal on the nerve stem cells, the researchers found. By culturing the stem cells with the compound, the scientists identified a possible biochemical pathway by which stem cells begin to become nerve cells.

The researchers next plan to test Isx-9 on a large number of different combinations of RNA, the chemical cousin of DNA, to see on which genes the compound might be working. They have also applied for a patent on Isx-9 and its relatives.

Other UT Southwestern researchers involved in the study were Dr. Jay Schneider, assistant professor of internal medicine; Dr. Zhengliang Gao, postdoctoral researcher in molecular biology; Dr. Shijie Li, postdoctoral researcher in molecular genetics; Midhat Farooqi, a student in the Medical Scientist Training Program; Dr. Tie-Shan Tang, instructor of physiology; Dr. Ilya Bezprozvanny, professor of physiology; and Dr. Douglas Frantz, assistant professor of biochemistry.

The work was supported by the Haberecht Wild-Hare Idea Program, the Donald W. Reynolds Foundation, the National Institute of Neurological Disorders and Stroke, the Ellison Medical Foundation, the Welch Foundation and the UT Southwestern President’s Research Council.

Dr. Jenny Hsieh -- http://www.utsouthwestern.edu/findfac/professional/0,2356,75845,00.html

Aline McKenzie | newswise
Further information:
http://www.utsouthwestern.edu

Further reports about: Hsieh Isx-9 Molecule Nerve

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>