Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Create Molecule That Nudges Nerve Stem Cells to Mature

16.06.2008
Inspired by a chance discovery during another experiment, researchers at UT Southwestern Medical Center have created a small molecule that stimulates nerve stem cells to begin maturing into nerve cells in culture.

This finding might someday allow a person’s own nerve stem cells to be grown outside the body, stimulated into maturity, and then re-implanted as working nerve cells to treat various diseases, the researchers said.

“This provides a critical starting point for neuro-regenerative medicine and brain cancer chemotherapy,” said Dr. Jenny Hsieh, assistant professor of molecular biology and senior author of the paper, which appears online today and in the June 17 issue of Nature Chemical Biology.

The creation of the molecule allowed the researchers to uncover some of the biochemical steps that happen as nerve cells mature. It also showed that large-scale screening of compounds can provide starting points for developing drugs to treat disorders such as Huntington’s disease, traumatic brain injury or cancer.

... more about:
»Hsieh »Isx-9 »Molecule »Nerve

The scientists began this project as a result of a separate study in which they were screening 147,000 compounds to see which could stimulate stem cells cultivated from rodent embryos to become heart cells. Unexpectedly, five molecules stimulated the cells to transform into forms resembling nerve cells. The researchers then created a variation of these molecules, a new compound called Isx-9 (for isoxazole-9). Isx-9 was easier to use than its initially discovered relatives because it worked at a much lower concentration and also dissolved more easily in water.

“It was completely serendipitous that we uncovered this neurogenic [nerve-creating] small molecule,” Dr. Hsieh said. “I think it’s one of the most powerful neurogenic small molecules on the planet. In theory, this molecule could provoke full maturation, to the point that the new nerve cells could fire, generating the electrical signals needed for full functioning.”

Nerve stem cells live in scattered groups in various areas of the brain. They are capable of becoming several different types of cells, not all of which are nerve cells.

In the study, rodent nerve stem cells from an area of the brain called the hippocampus were cultured with Isx-9. They clustered together and developed spiky appendages called neurites, which typically happens when nerve cells are grown in culture.

Isx-9 also prevented the stem cells from developing into non-nerve cells and was more potent than other neurogenic substances in stimulating nerve-cell development. The molecule generated two to three times more nerve cells than other commonly used compounds.

Neuroscientists believed for decades that the adult mammalian brain could not grow new nerve cells. Instead, they thought, learning and memory were strictly a matter of the brain making new connections between existing cells.

It is now known, however, that the brain constantly creates new nerve cells. In the hippocampus, which is involved with learning and memory, stem cells mature into full-blown nerve cells at a rate of thousands a day, Dr. Hsieh said.

Scientists know that when a mature nerve cell sends a chemical signal called a neurotransmitter to a stem cell, the immature cell begins to mature, but they don’t know what biochemical pathways or genes are involved, Dr. Hsieh said.

“The big gap in our knowledge is how to control these stem cells,” she said.

Isx-9 appeared to act like a neurotransmitter-like signal on the nerve stem cells, the researchers found. By culturing the stem cells with the compound, the scientists identified a possible biochemical pathway by which stem cells begin to become nerve cells.

The researchers next plan to test Isx-9 on a large number of different combinations of RNA, the chemical cousin of DNA, to see on which genes the compound might be working. They have also applied for a patent on Isx-9 and its relatives.

Other UT Southwestern researchers involved in the study were Dr. Jay Schneider, assistant professor of internal medicine; Dr. Zhengliang Gao, postdoctoral researcher in molecular biology; Dr. Shijie Li, postdoctoral researcher in molecular genetics; Midhat Farooqi, a student in the Medical Scientist Training Program; Dr. Tie-Shan Tang, instructor of physiology; Dr. Ilya Bezprozvanny, professor of physiology; and Dr. Douglas Frantz, assistant professor of biochemistry.

The work was supported by the Haberecht Wild-Hare Idea Program, the Donald W. Reynolds Foundation, the National Institute of Neurological Disorders and Stroke, the Ellison Medical Foundation, the Welch Foundation and the UT Southwestern President’s Research Council.

Dr. Jenny Hsieh -- http://www.utsouthwestern.edu/findfac/professional/0,2356,75845,00.html

Aline McKenzie | newswise
Further information:
http://www.utsouthwestern.edu

Further reports about: Hsieh Isx-9 Molecule Nerve

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>