Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Need microRNA processing? Get Smad

12.06.2008
Researchers at Tufts University School of Medicine and Tufts Medical Center have found that Smad proteins regulate microRNA (miRNA) processing.

Understanding the role of Smad proteins enables researchers to investigate abnormal miRNA processing which is a contributing factor in development of cardiovascular disorders and cancer. The study was published online today in Nature.

"We found that Smad proteins, the signal carriers of a group of proteins that help regulate cells, promote the processing of a subset of microRNA, including miR-21. Smad proteins control the processing of miRNA from a primary copy of RNA (pri-miRNA) to precursor miRNA (pre-miRNA)," explains corresponding and senior author Akiko Hata, PhD, assistant professor at Tufts University School of Medicine and a member of the biochemistry program faculty at the Sackler School of Graduate Biomedical Sciences. "Smad proteins move to the nucleus of the cell and interact with a specific complex, called the Drosha microprocessor complex, to promote the processing of pri-miR-21 to pre-miR-21, eventually leading to an increase in mature miR-21 levels."

"Mature miR-21 targets a tumor suppressor gene important for programmed cell death in both cancer cells and in smooth muscle cells, the cells that help our veins and arteries contract and relax," contextualizes Brandi Davis, first author, and PhD candidate in the department of biochemistry at Tufts University School of Medicine. "Abnormal miRNA processing is a contributing factor in cardiovascular disorders and cancer, yet little is known about its regulation."

... more about:
»Hata »MicroRNA »Sackler »Smad »TGFâ »miR-21 »miRNA »processing

Hata, Davis and colleagues designed a series of experiments to determine how members of a super-family of growth factors, called the transforming growth factor â (TGFâ) family, which is a group of proteins that help regulate cellular functions, can cause miRNA levels to increase. By exposing cells to members of the TGFâ family, the researchers were able to observe that, over time, levels of pre-miR-21 and mature miR-21 increased, while levels of pri-miR-21 did not change. "Since pri-miR-21 levels did not change, we concluded that the TGFâ family of growth factors doesn't begin to play a role in miRNA processing until the pri-miRNA to pre-miRNA step," explains Hata, who is also an investigator in the Molecular Cardiology Research Institute (MCRI) at Tufts Medical Center.

"Smad proteins were thought to act exclusively by regulating the transcription of DNA into messenger RNA (mRNA) in response to TGFâ signaling. This finding reveals a new role of Smad proteins as regulators of miRNA processing," comments Giorgio Lagna, PhD, co-author, investigator in the MCRI at Tufts Medical Center and also an assistant professor at Tufts University School of Medicine. "If we want to generate a drug that regulates signaling by TGFâ, we now have the option to target different pathways downstream of TGFâ and achieve much more specific outcomes."

MiRNAs are small gene products that regulate gene expression by interaction with mRNA. The role of mRNA in a cell is to carry the instructions for making proteins from the DNA in the nucleus to another part of the cell where the instructions are carried out and the proteins are made. "Thus, cells with abnormal miRNA levels may have abnormal protein levels, putting the organism at risk for many diseases including cancer and cardiovascular disorders. More research needs to be done to elucidate further the roles of miR-21 and other miRNA molecules," explains Hata "because better understanding of how miRNAs effect disease may lead to a clearer understanding of disease initiation and progression."

This work was supported by the National Heart, Lung, and Blood Institute and the Eunice Kennedy Shriver National Institute of Child Health and Human Development, both institutes of the National Institutes of Health.

Davis BN, Hilyard AC, Lagna G, Hata A. Nature. 2008 "SMAD proteins control DROSHA-mediated microRNA maturation." Advance Online Publication, June 11, 2008, doi 10.1038/nature07086

About Tufts University School of Medicine

Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. The Sackler School undertakes research that is consistently rated among the highest in the nation for its impact on the advancement of medical science.

Siobhan Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

Further reports about: Hata MicroRNA Sackler Smad TGFâ miR-21 miRNA processing

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>