Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Enzyme may hold key to improved targeting of cancer-fighting drugs

Latest research points to new compounds and improved control

A critical enzyme used to prepare a powerful cancer-killing agent may be able to help drug makers better target the cells the natural product attacks, according to findings published in the May 23 edition of the Journal of Biological Chemistry.

Building on their earlier research into neocarzinostatin, a team of researchers from Boston College and the University of Wisconsin, Madison discovered that one of the enzymes contained in the bacteria used to produce the drug may hold promise in creating newer, more stable compounds from the structurally complex class of antibiotic known as chromoproteins.

"We've revealed that the enzyme is loose in specificity, which means it may be able to be used to make new drugs," said Boston College Chemist Steven D. Bruner, a co-author of the report. "Based on these findings, we foresee success in the lab making certain compounds more controllable."

... more about:
»Bruner »Cells »compound

In addition to Bruner, the research team includes BC graduate student Heather A. Cooke and University of Wisconsin Professor Ben Shen and researchers Yinggang Luo, Shuangjun Lin and Jian Zhang.

Used as a chemotherapeutic, the drug – an enediyne anti-tumor agent – targets both normal and cancer cells, says Bruner, an assistant professor of chemistry. But the team has determined that the chemical components of the antibiotic are capable of distinguishing between normal cells and cancer cells.

The latest research confirmed the team's proposal that the naphthoic acid within the compound can be altered to design cancer-fighting drugs specific to chemotherapeutic targets. That will require the use of genetic engineering in order to manipulate the molecules within the bacteria, which occurs naturally in soil.

Genetic engineering will enable researchers to produce more specific and less toxic analogs of neocarzinostatin and increase the available supply of the drug, Bruner says.

"This is the beginning of an approach to be able to understand and manipulate these chemical pathways to make new drugs," says Bruner.

Ed Hayward | EurekAlert!
Further information:

Further reports about: Bruner Cells compound

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>