Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme may hold key to improved targeting of cancer-fighting drugs

02.06.2008
Latest research points to new compounds and improved control

A critical enzyme used to prepare a powerful cancer-killing agent may be able to help drug makers better target the cells the natural product attacks, according to findings published in the May 23 edition of the Journal of Biological Chemistry.

Building on their earlier research into neocarzinostatin, a team of researchers from Boston College and the University of Wisconsin, Madison discovered that one of the enzymes contained in the bacteria used to produce the drug may hold promise in creating newer, more stable compounds from the structurally complex class of antibiotic known as chromoproteins.

"We've revealed that the enzyme is loose in specificity, which means it may be able to be used to make new drugs," said Boston College Chemist Steven D. Bruner, a co-author of the report. "Based on these findings, we foresee success in the lab making certain compounds more controllable."

... more about:
»Bruner »Cells »compound

In addition to Bruner, the research team includes BC graduate student Heather A. Cooke and University of Wisconsin Professor Ben Shen and researchers Yinggang Luo, Shuangjun Lin and Jian Zhang.

Used as a chemotherapeutic, the drug – an enediyne anti-tumor agent – targets both normal and cancer cells, says Bruner, an assistant professor of chemistry. But the team has determined that the chemical components of the antibiotic are capable of distinguishing between normal cells and cancer cells.

The latest research confirmed the team's proposal that the naphthoic acid within the compound can be altered to design cancer-fighting drugs specific to chemotherapeutic targets. That will require the use of genetic engineering in order to manipulate the molecules within the bacteria, which occurs naturally in soil.

Genetic engineering will enable researchers to produce more specific and less toxic analogs of neocarzinostatin and increase the available supply of the drug, Bruner says.

"This is the beginning of an approach to be able to understand and manipulate these chemical pathways to make new drugs," says Bruner.

Ed Hayward | EurekAlert!
Further information:
http://www.bc.edu

Further reports about: Bruner Cells compound

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Scientists re-create brain neurons to study obesity and personalize treatment

20.04.2018 | Health and Medicine

Spider silk key to new bone-fixing composite

20.04.2018 | Materials Sciences

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

20.04.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>