Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advances in C. difficile research

02.06.2008
New research into the toxins, virulence, spread and prevention of the superbug Clostridium difficile is reported in the June special issue of the Journal of Medical Microbiology. These findings will play a crucial role in providing us with ammunition in the fight against a sometimes deadly pathogen.

Clostridium difficile is found in the environment but is most common in hospitals. It can cause a serious hospital-acquired infection when antibiotics are used as they upset the balance of the normal gut flora, allowingC. difficile to grow and produce toxins. It is carried in the guts of 3% of healthy humans but carriage rates in hospital patients tend to be much higher and elderly people in hospitals, being treated with antibiotics are most at risk of developing infection.

The bacteria produce spores when they encounter unfavourable conditions. Transmission of infection is through the ingestion of these spores which can survive on surfaces and floors for years and are resistant to many disinfectants and antiseptics, including alcohol hand gel.

Symptoms include diarrhoea, nausea, abdominal pain, loss of appetite, fever, bowel inflammation and possible perforation, which can be fatal. Only two antibiotics are regularly used to treatC. difficile infection: metronidazole and vancomycin, but relapse is a common problem following treatment. In 2004, a hypervirulent strain (C. difficile 027/NAP1/BI) was reported, which appears to make toxins more rapidly and at higher levels than other strains, as well as being resistant to many antibiotics, including fluoroquinolones.

... more about:
»Infection »Toxin »antibiotic »difficile »strain

Several studies in the Journal of Medical Microbiology look at the spread ofC. difficile in different countries, including Austria and Korea. Research shows that the use of antibiotic increased the risk of outbreaks of the hypervirulent strain ofC. difficile in the Netherlands. The issue also contains evidence to suggest thatC. difficile could be spread between animals and humans - researchers have isolated the bacterium from food animals in Slovenia.

Scientists investigated the effects of antibiotics, antigens and other agents on the virulence and pathogenicity of C. difficile. Toxins were also studied; research reveals some important information about the synthesis, processing and effects of different toxins. A new gene sequence has been discovered in the hypervirulentC. difficile 027 strain, which could be related to its increased virulence by affecting toxin binding.

The potential for a 'designer' probiotic forC. difficile is discussed. Professor Ian Poxton, former Editor-in-Chief of the Journal of Medical Microbiology said "this is an important approach that is hopefully much better than previously reported studies using commercially available yoghurt-like drinks, and certainly more palatable than 'faecal transplants'."

Lucy Goodchild | alfa
Further information:
http://jmm.sgmjournals.org/current.shtml
http://www.sgm.ac.uk/news/hot_topics/cdiff.pdf
http://www.sgm.ac.uk/pubs

Further reports about: Infection Toxin antibiotic difficile strain

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>