Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advances in C. difficile research

02.06.2008
New research into the toxins, virulence, spread and prevention of the superbug Clostridium difficile is reported in the June special issue of the Journal of Medical Microbiology. These findings will play a crucial role in providing us with ammunition in the fight against a sometimes deadly pathogen.

Clostridium difficile is found in the environment but is most common in hospitals. It can cause a serious hospital-acquired infection when antibiotics are used as they upset the balance of the normal gut flora, allowingC. difficile to grow and produce toxins. It is carried in the guts of 3% of healthy humans but carriage rates in hospital patients tend to be much higher and elderly people in hospitals, being treated with antibiotics are most at risk of developing infection.

The bacteria produce spores when they encounter unfavourable conditions. Transmission of infection is through the ingestion of these spores which can survive on surfaces and floors for years and are resistant to many disinfectants and antiseptics, including alcohol hand gel.

Symptoms include diarrhoea, nausea, abdominal pain, loss of appetite, fever, bowel inflammation and possible perforation, which can be fatal. Only two antibiotics are regularly used to treatC. difficile infection: metronidazole and vancomycin, but relapse is a common problem following treatment. In 2004, a hypervirulent strain (C. difficile 027/NAP1/BI) was reported, which appears to make toxins more rapidly and at higher levels than other strains, as well as being resistant to many antibiotics, including fluoroquinolones.

... more about:
»Infection »Toxin »antibiotic »difficile »strain

Several studies in the Journal of Medical Microbiology look at the spread ofC. difficile in different countries, including Austria and Korea. Research shows that the use of antibiotic increased the risk of outbreaks of the hypervirulent strain ofC. difficile in the Netherlands. The issue also contains evidence to suggest thatC. difficile could be spread between animals and humans - researchers have isolated the bacterium from food animals in Slovenia.

Scientists investigated the effects of antibiotics, antigens and other agents on the virulence and pathogenicity of C. difficile. Toxins were also studied; research reveals some important information about the synthesis, processing and effects of different toxins. A new gene sequence has been discovered in the hypervirulentC. difficile 027 strain, which could be related to its increased virulence by affecting toxin binding.

The potential for a 'designer' probiotic forC. difficile is discussed. Professor Ian Poxton, former Editor-in-Chief of the Journal of Medical Microbiology said "this is an important approach that is hopefully much better than previously reported studies using commercially available yoghurt-like drinks, and certainly more palatable than 'faecal transplants'."

Lucy Goodchild | alfa
Further information:
http://jmm.sgmjournals.org/current.shtml
http://www.sgm.ac.uk/news/hot_topics/cdiff.pdf
http://www.sgm.ac.uk/pubs

Further reports about: Infection Toxin antibiotic difficile strain

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>