Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Golden Nanocrown

15.05.2008
Held together by metal-metal bonds: a large ring containing 36 gold atoms

Chinese researchers have recently made a “golden crown” with a diameter of only a few nanometers. It is a large ring-shaped molecule containing 36 gold atoms.

The lords of the ring, a team of researchers from the Universities of Beijing, Hong Kong, and Nanjing report their unusual compound in the journal Angewandte Chemie: the molecular ring structure is held together exclusively by gold–gold bonds and is thus the largest ring system made of gold atoms produced to date.

Large molecular rings have fascinated chemists for over 40 years—ever since the discovery of crown ethers in 1967. The pioneers in this area, C. J. Pederson, J.-M. Lehn, and D. J. Cram received the Nobel Prize in Chemistry for their discovery in 1987. In the meantime, large molecular ring systems have played an important role in the search for new functional materials and in nanotechnology. The synthesis of ring systems held together exclusively by metal–metal bonds has remained a challenge.

... more about:
»Atom »bonds »containing »triangle

Small rings made of positively charged gold atoms have been know for some time, but only recently could the Chinese team make a ring containing 16 gold atoms. Now, the researchers, led by Shu-Yan Yu, Yi-Zhi Li, and Vivian Wing-Wah Yam, have introduced a new representative of this class of compounds, the biggest gold ring to date that is held together by means of gold–gold bonds: a ring system containing 36 univalent gold atoms.

The researchers started their synthesis with a ring system containing six gold atoms. Three of the gold atoms are linked into a triangle. Each of these gold atoms is attached to another gold atom that sticks out from the corner of the triangle. Three organic ligands are then bound to this flat double triangle to form a molecule that resembles a three-blade propeller.

Six such “propellers” can be linked into a larger ring by means of a self-assembly process. Within this ring system, the gold atoms are arranged into a shape that resembles a crown: six double triangles are each bound to each other by two corners. The free double-corners point outward in a pattern that alternates above and below the plane of the ring.

Author: Shu-Yan Yu, Renmin University of China, Beijing (China), http://chem.ruc.edu.cn/readnews.asp?newsid=338

Title: Au36 Crown: A Macrocyclization Directed by Metal–Metal Bonding Interactions

Angewandte Chemie International Edition 2008, 47, No. 24, doi: 10.1002/anie.200801001

Shu-Yan Yu | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://chem.ruc.edu.cn/readnews.asp?newsid=338

Further reports about: Atom bonds containing triangle

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>