Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists decipher fruit tree genome for the first time

A scientific group of the Universities of Illinois (USA), Georgia (USA), Hawaii (USA) and Nakai (China), among others, have deciphered for the first time fruit genomic sequence, in this case papaya (Carica papaya), according to the cover of the last issue of the prestigious journal Nature. One of the researchers is a scientist assigned to the group of Molecular Genetics of the Department of Genetics of the University of Granada

This new advance involves, after sequencing other plants’ genomes such as the sample species in biological research Arabidopsis thaliana, rice, poplar and vine, the fifth vegetal genome sequenced up to now, and the first one from a fruit tree. Besides, the authors have used in their analysis the SunUp transgenic variety, virus ringspot resistant (which represents a serious threat for this species), which means that this has been the first transgenic organism to be sequenced.

Rafael Navajas Pérez, researcher of the Department of Genetics of the University of Granada, is part of the team made up by more than 85 scientists who have participated in this research supervised by doctors Ray Ming (University of Illinois), Andrew H. Paterson (University of Georgia) and Maqsudul Alam (University of Hawaii).

Papaya is a very important crop in great part of Latin America and the USA owing to its nutritional benefits and medical applications, and provides an annual income of about 130 million dollars only in the state of Hawaii. In Europe, this crop is experiencing a boom, and Spain, and specifically the Tropical Coast of Granada, is an important producer as a consequence of the particular climatic conditions of the area.

... more about:
»FRUIT »Genetics »Genome »crop »papaya
A model to research
Apart from the relevant commercial implications, due to its position in the tree of life and the recent discovering of sexual chromosomes in its genome, Carica papaya is an excellent study model to answer a series of interesting questions related to the evolutionary history of flower plants.

From this discovery, the researchers have already identified that its genome contains fewer genes than that of the Arabidopsis (a small annual herb), in spite of being three times bigger than it. According to the researcher from Granada, the lack of recent phenomenon of gene duplication, frequent in angiosperms genomes, can be behind of this observation. Despite this, it has been detected a significant increase in the number of genes related to arboreal development, the deposition and removal of starch reserves, the attraction of agents responsible for spreading the seeds and the adaptation to the length of the day in a tropical climate.

Other important crops
Experts predict that this new genome will offer numerous advantages as a reference system for comparative genomics with other fruit trees, and will be the basis to study morphological, physiological, medicinal and nutritional properties of other plants belonging to the order of the Brassicales, where papaya is included, which includes economically important crops such as cabbage, cauliflower, whitewash brush, mustard or turnip. Likewise, they expect papaya to be a reference organism for the study of the evolution of sexual chromosomes in plants.

Dr Navajas Pérez, who at present is working on the sequencing of the determinant region of the sex in the sexual chromosomes of papaya and whose research career has been focused on different aspects of plants’ sexual determination, intends, in a near future, to implement a research work in the UGR directed to sex early diagnosis in vegetal species of economic interest for Andalusia, as well as for the study of other molecular aspects of sex Biology in plants.

Reference: Rafael Navajas Pérez. Department of Genetics of the University of Granada.
Post-Doctoral Fulbright Researcher at the University of Georgia, Athens (GA, USA).
Tlf. Number: (706) 254-5245
Further information in:

Antonio Marín Ruiz | alfa
Further information:

Further reports about: FRUIT Genetics Genome crop papaya

More articles from Life Sciences:

nachricht Here comes the long-sought-after iron-munching microbe
25.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Novel method to benchmark and improve the performance of protein measumeasurement techniques
25.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>