Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists decipher fruit tree genome for the first time

15.05.2008
A scientific group of the Universities of Illinois (USA), Georgia (USA), Hawaii (USA) and Nakai (China), among others, have deciphered for the first time fruit genomic sequence, in this case papaya (Carica papaya), according to the cover of the last issue of the prestigious journal Nature. One of the researchers is a scientist assigned to the group of Molecular Genetics of the Department of Genetics of the University of Granada

This new advance involves, after sequencing other plants’ genomes such as the sample species in biological research Arabidopsis thaliana, rice, poplar and vine, the fifth vegetal genome sequenced up to now, and the first one from a fruit tree. Besides, the authors have used in their analysis the SunUp transgenic variety, virus ringspot resistant (which represents a serious threat for this species), which means that this has been the first transgenic organism to be sequenced.

Rafael Navajas Pérez, researcher of the Department of Genetics of the University of Granada, is part of the team made up by more than 85 scientists who have participated in this research supervised by doctors Ray Ming (University of Illinois), Andrew H. Paterson (University of Georgia) and Maqsudul Alam (University of Hawaii).

Papaya is a very important crop in great part of Latin America and the USA owing to its nutritional benefits and medical applications, and provides an annual income of about 130 million dollars only in the state of Hawaii. In Europe, this crop is experiencing a boom, and Spain, and specifically the Tropical Coast of Granada, is an important producer as a consequence of the particular climatic conditions of the area.

... more about:
»FRUIT »Genetics »Genome »crop »papaya
A model to research
Apart from the relevant commercial implications, due to its position in the tree of life and the recent discovering of sexual chromosomes in its genome, Carica papaya is an excellent study model to answer a series of interesting questions related to the evolutionary history of flower plants.

From this discovery, the researchers have already identified that its genome contains fewer genes than that of the Arabidopsis (a small annual herb), in spite of being three times bigger than it. According to the researcher from Granada, the lack of recent phenomenon of gene duplication, frequent in angiosperms genomes, can be behind of this observation. Despite this, it has been detected a significant increase in the number of genes related to arboreal development, the deposition and removal of starch reserves, the attraction of agents responsible for spreading the seeds and the adaptation to the length of the day in a tropical climate.

Other important crops
Experts predict that this new genome will offer numerous advantages as a reference system for comparative genomics with other fruit trees, and will be the basis to study morphological, physiological, medicinal and nutritional properties of other plants belonging to the order of the Brassicales, where papaya is included, which includes economically important crops such as cabbage, cauliflower, whitewash brush, mustard or turnip. Likewise, they expect papaya to be a reference organism for the study of the evolution of sexual chromosomes in plants.

Dr Navajas Pérez, who at present is working on the sequencing of the determinant region of the sex in the sexual chromosomes of papaya and whose research career has been focused on different aspects of plants’ sexual determination, intends, in a near future, to implement a research work in the UGR directed to sex early diagnosis in vegetal species of economic interest for Andalusia, as well as for the study of other molecular aspects of sex Biology in plants.

Reference: Rafael Navajas Pérez. Department of Genetics of the University of Granada.
Post-Doctoral Fulbright Researcher at the University of Georgia, Athens (GA, USA).
Tlf. Number: (706) 254-5245
E-mail:rnavajas@uga.edu
Further information in: http://www.ugr.es/~rnavajas
http://www.plantgenome.uga.edu

Antonio Marín Ruiz | alfa
Further information:
http://www.plantgenome.uga.edu
http://prensa.ugr.es/prensa/research/verNota/prensa.php?nota=537
http://www.ugr.es/~rnavajas

Further reports about: FRUIT Genetics Genome crop papaya

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>