Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The most primitive confuciusornithid bird from China and its implications for early avian flight

08.05.2008
Professor Zhang FuCheng and his colleagues discovered and named a new confuciusornithid bird, Eoconfuciusornis zhengi, gen. et sp. nov. that lived 131 million years ago.

It is the most primitive member of Family Confuciusornithidae and thus extends the lifespan of this family to 11Ma. In addition, Eoconfuciusornis and its relatives have many osteological transformations and represent an early adaptation toward improved flight in the evolution of Confuciusornithidae.

This paper is published in volume 51, number 5 (May, 2008) of Science in China, and the authors are Zhang FuCheng, Zhou ZhongHe and Michael J BENTON.

Confuciusornithids are a basal bird group that lived from 120¨D125 million years ago. Eoconfuciusornis belongs to confuciusornithids for possessing some key characters such as the toothless upper and lower jaws and the forked rostral end of mandibular symphysis.

Eoconfuciusornis and its relatives show many osteological transformations, for instance, the increase in the size of deltopectoral crest of the humerus and of the keel of the sternum. These features provide osteological evidence for increasing flight power throughout the 11 million years of confuciusornithids' evolution.

IVPP is short for "Institution of Vertebrate Paleontology and Paleonanthropology", which is a research institute under the Chinese Academy of Sciences with many renowned vertebrate paleontologists and important collections.

This research is supported by the Chinese Academy of Sciences (Grant No. KZCX3-SW-142), the National Natural Science Foundation of China (Grant Nos. 40472018, 40121202), the Major Basic Research Projects of the Ministry of Science and Technology of the People's Republic of China (Grant No. 2006CB806400), and the Royal Society and Natural Environment Research Council (Grant No. NE/E011055/1)

Reference: ZHANG FuCheng, ZHOU ZhongHe, Michael J BENTON. A primitive confuciusornithid bird from China and its implications for early avian flight. Science in China Series D: Earth Sciences 2008; 5(51):1-15

Li DongSheng | EurekAlert!
Further information:
http://zh.scichina.com/english/

Further reports about: Eoconfuciusornis FuCheng avian confuciusornithid implications osteological primitive

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>