Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The most primitive confuciusornithid bird from China and its implications for early avian flight

Professor Zhang FuCheng and his colleagues discovered and named a new confuciusornithid bird, Eoconfuciusornis zhengi, gen. et sp. nov. that lived 131 million years ago.

It is the most primitive member of Family Confuciusornithidae and thus extends the lifespan of this family to 11Ma. In addition, Eoconfuciusornis and its relatives have many osteological transformations and represent an early adaptation toward improved flight in the evolution of Confuciusornithidae.

This paper is published in volume 51, number 5 (May, 2008) of Science in China, and the authors are Zhang FuCheng, Zhou ZhongHe and Michael J BENTON.

Confuciusornithids are a basal bird group that lived from 120¨D125 million years ago. Eoconfuciusornis belongs to confuciusornithids for possessing some key characters such as the toothless upper and lower jaws and the forked rostral end of mandibular symphysis.

Eoconfuciusornis and its relatives show many osteological transformations, for instance, the increase in the size of deltopectoral crest of the humerus and of the keel of the sternum. These features provide osteological evidence for increasing flight power throughout the 11 million years of confuciusornithids' evolution.

IVPP is short for "Institution of Vertebrate Paleontology and Paleonanthropology", which is a research institute under the Chinese Academy of Sciences with many renowned vertebrate paleontologists and important collections.

This research is supported by the Chinese Academy of Sciences (Grant No. KZCX3-SW-142), the National Natural Science Foundation of China (Grant Nos. 40472018, 40121202), the Major Basic Research Projects of the Ministry of Science and Technology of the People's Republic of China (Grant No. 2006CB806400), and the Royal Society and Natural Environment Research Council (Grant No. NE/E011055/1)

Reference: ZHANG FuCheng, ZHOU ZhongHe, Michael J BENTON. A primitive confuciusornithid bird from China and its implications for early avian flight. Science in China Series D: Earth Sciences 2008; 5(51):1-15

Li DongSheng | EurekAlert!
Further information:

Further reports about: Eoconfuciusornis FuCheng avian confuciusornithid implications osteological primitive

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>