Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The most primitive confuciusornithid bird from China and its implications for early avian flight

08.05.2008
Professor Zhang FuCheng and his colleagues discovered and named a new confuciusornithid bird, Eoconfuciusornis zhengi, gen. et sp. nov. that lived 131 million years ago.

It is the most primitive member of Family Confuciusornithidae and thus extends the lifespan of this family to 11Ma. In addition, Eoconfuciusornis and its relatives have many osteological transformations and represent an early adaptation toward improved flight in the evolution of Confuciusornithidae.

This paper is published in volume 51, number 5 (May, 2008) of Science in China, and the authors are Zhang FuCheng, Zhou ZhongHe and Michael J BENTON.

Confuciusornithids are a basal bird group that lived from 120¨D125 million years ago. Eoconfuciusornis belongs to confuciusornithids for possessing some key characters such as the toothless upper and lower jaws and the forked rostral end of mandibular symphysis.

Eoconfuciusornis and its relatives show many osteological transformations, for instance, the increase in the size of deltopectoral crest of the humerus and of the keel of the sternum. These features provide osteological evidence for increasing flight power throughout the 11 million years of confuciusornithids' evolution.

IVPP is short for "Institution of Vertebrate Paleontology and Paleonanthropology", which is a research institute under the Chinese Academy of Sciences with many renowned vertebrate paleontologists and important collections.

This research is supported by the Chinese Academy of Sciences (Grant No. KZCX3-SW-142), the National Natural Science Foundation of China (Grant Nos. 40472018, 40121202), the Major Basic Research Projects of the Ministry of Science and Technology of the People's Republic of China (Grant No. 2006CB806400), and the Royal Society and Natural Environment Research Council (Grant No. NE/E011055/1)

Reference: ZHANG FuCheng, ZHOU ZhongHe, Michael J BENTON. A primitive confuciusornithid bird from China and its implications for early avian flight. Science in China Series D: Earth Sciences 2008; 5(51):1-15

Li DongSheng | EurekAlert!
Further information:
http://zh.scichina.com/english/

Further reports about: Eoconfuciusornis FuCheng avian confuciusornithid implications osteological primitive

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>