Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Power from Formic Acid

07.05.2008
Room temperature is warm enough: hydrogen for fuel cells from formic acid

One of the central challenges of our time is the supply of enough environmentally friendly and resource-efficient energy to our society. In this context, hydrogen technology has taken on increased importance.

Björn Loges, Albert Boddien, Henrik Junge, and Matthias Beller at the Leibniz Institute of Catalysis in Rostock have now succeeded in the controlled extraction of hydrogen from formic acid—without the need for the high-temperature reforming process usually involved in other hydrogen generation systems. As they report in the journal Angewandte Chemie, this hydrogen source, generated at room temperature, can be directly introduced into fuel cells.

Hydrogen-powered fuel cells are the cleanest source of energy because they only produce one type of exhaust gas: water vapor. However, it is not yet practicable to transport and store hydrogen, which is a gas and cannot be pumped into a tank as easily as gasoline. Storage systems currently in use are large and heavy, expensive, and complex. It would thus be better to couple the fuel cell directly to a hydrogen-producing material, which would supply the fuel cell on demand.

... more about:
»Energy »Fuel »Hydrogen »acid »formic

Aside from methane and methanol, renewable resources such as biomass and its fermentation products (e.g. bioethanol) are the most promising starting materials for this technology. The serious disadvantage is that their conversion only works at temperatures above 200 °C, which consumes a significant portion of the energy produced.

The researchers from Rostock have now developed a feasible process for the on-demand release of hydrogen; they produce hydrogen from formic acid (HCO2H). In the presence of an amine (e.g. N,N-dimethylhexylamine) and with a suitable catalyst (e.g. the commercially available ruthenium phosphine complex [RuCl2(PPH3)2]), formic acid is selectively converted into carbon dioxide and hydrogen at room temperature. A simple activated charcoal filter is enough to purify the hydrogen gas for use in a fuel cell. The use of formic acid for “hydrogen storage” allows the advantages of established hydrogen/oxygen fuel cell technology to be combined with those of liquid fuels. Formic acid is nontoxic and easy to store. Because formic acid can be generated catalytically from CO2 and biomass-derived hydrogen, the cycle is CO2 neutral in principle.

Will we be replacing gasoline with formic acid in the future? It is not inconceivable, but initial applications requiring smaller amounts of energy are more probable. “For the use of fuel cells in portable electrical devices,” says Beller, “this nascent formic acid technology opens up new possibilities in the short term.”

Author: Matthias Beller, Universität Rostock (Germany), http://www.catalysis.de/Beller-Matthias.239.0.html

Title: Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells

Angewandte Chemie International Edition 2008, 47, No. 21, 3962–3965, doi: 10.1002/anie.200705972

Matthias Beller | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.catalysis.de/Beller-Matthias.239.0.html

Further reports about: Energy Fuel Hydrogen acid formic

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>