Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Concentrating on Different Aspects of Pain Leads to Breakthrough in Migraine Genetics

17.04.2008
In a new study, published in the American Journal of Human Genetics, researchers were able for the first time to convincingly demonstrate a genomic locus to be linked to migraine susceptibility in two diverse populations.

Migraine is the most common cause of episodic headache, and by far the most common neurological cause of a doctor’s visit. It affects some 15% of the population, including some 41 million people in Europe, and places a considerable burden on healthcare in both the developed and the developing world.

During the last few years, great strides have been made in discovering common genes influencing the susceptibility to common diseases, such as diabetes, Crohn’s disease and schizophrenia. However, no genes have yet been convincingly associated with migraine susceptibility, probably due to the high degree of variability of the disease phenotype combined with the lack of viable laboratory tests.

”To address this problem, we developed a new analysis technique concentrating on different symptoms of migraine”, says Professor Aarno Palotie (University of Helsinki, Finland, and the Sanger Institute, Cambridge, UK). The new technique was used in the large international study including 1700 migraine patients and their close relatives from 210 Finnish and Australian migraine families. The Finnish families had been ascertained through neurology clinics, while the Australian families had been collected through a twin study. An initial genome-wide microsatellite study was followed up by an independent targeted replication study.

... more about:
»Genetic »common »locus »migraine »susceptibility

Researchers identified one gene locus on chromosome 10q23, which showed significant evidence of genetic linkage in both populations studied as well as in the replication study. The gene locus was especially strongly linked to female migraineurs. “In a further analysis, two independent previous studies, one Finnish and one Australian, had detected the same locus, but in those studies the level of evidence had been just below significance, and thus the connection had so far been missed”, tells researcher Verneri Anttila from Palotie’s group.

This locus is thus linked to migraine in a total of 4000 migraineurs or their close relatives. “All of these findings depended on the newly discovered aspect of migraine genetics: different types of pain – such as pain that pulsates or pain that is unilateral – are more closely linked to specific genetic loci than general pain”, Palotie states.

In this study, researchers were able for the first time to convincingly demonstrate a genomic locus to be linked to migraine susceptibility in two diverse populations. This is especially interesting as Finland and Australia are genetically distant, and also as it tied together previous research, resulting in very robust evidence for pinpointing the susceptibility region.

“This study is the first international collaboration as well as the largest linkage study in migraine to date. It successfully applied new analysis strategies in detecting the locus and thus paved the way for subsequent large association studies”, Palotie and Anttila say. According them, this study gives new hope to deciphering the migraine pathways and therefore discovering targets for future treatments, as well as discovering the first migraine gene variants.

Researchers from four countries and nine research institutes took part in this study:

Finland: University of Helsinki, Helsinki University Central Hospital, Folkhälsan Research Center and National Public Health Institute, Helsinki
Australia: Queensland Institute of Medical Research, Brisbane
USA: Columbia University, New York, NY, National Institute of Mental Health, NIH, Bethesda, MD, the Broad Institute of MIT and Harvard, Cambridge, Massachusetts

UK: Wellcome Trust Sanger Institute, Cambridge

Paivi Lehtinen | alfa
Further information:
http://www.helsinki.fi

Further reports about: Genetic common locus migraine susceptibility

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>