Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NC State Gene 'Knockout' Floors Tobacco Carcinogen

20.03.2008
In large-scale field trials, scientists from North Carolina State University have shown that silencing a specific gene in burley tobacco plants significantly reduces harmful carcinogens in cured tobacco leaves.

The finding could lead to tobacco products – especially smokeless products – with reduced amounts of cancer-causing agents.

NC State's Dr. Ralph Dewey, professor of crop science, and Dr. Ramsey Lewis, assistant professor of crop science, teamed with colleagues from the University of Kentucky to knock out a gene known to turn nicotine into nornicotine. Nornicotine is a precursor to the carcinogen N-nitrosonornicotine (NNN). Varying percentages of nicotine are turned into nornicotine while the plant ages; nornicotine converts to NNN as the tobacco is cured, processed and stored.

The field tests in Kentucky, Virginia and North Carolina compared cured burley tobacco plants with the troublesome gene silenced and "control" plant lines with normal levels of gene expression. The researchers found a six-fold decrease in carcinogenic NNN in the genetically modified tobacco plants, as well as a 50 percent overall reduction in the class of harmful compounds called TSNAs, or tobacco-specific nitrosamines. TSNAs are reported to be among the most important tobacco-related compounds implicated in various cancers in laboratory experiments, Lewis said.

... more about:
»Lewis »burley

The research results were published online in Plant Biotechnology Journal.

Lewis and Dewey stress that the best way for people to avoid the risks associated with tobacco use is to avoid using tobacco products. But their findings show that targeted gene silencing can work as well in the field as it does on the lab bench.

"Creating a tobacco plant with fewer or no harmful compounds may also help with tobacco plants that are being used to create pharmaceuticals or other high-value products," Dewey said.

To get initial lines of plants with the troublesome gene silenced, the NC State researchers used a technique called RNA interference in which genetic engineering was used to introduce a gene that inhibits the demethylase gene function into the tobacco plant.

Dewey and Lewis have since developed tobacco lines with the same effect without using genetic engineering. They randomly inserted chemical changes, or mutations, into the tobacco genome of burley tobacco plants. They then searched for plants in which the nicotine demethylase gene was permanently impaired. The researchers are currently working to transfer this mutation to widely used tobacco varieties.

Dewey and Lewis add that nothing else in the plant changed – growth or resistance to insects or disease, for example – after they knocked out this specific gene.

While Lewis believes that varieties of burley tobacco with a silenced demethylase gene will exist within the next few years, the NC State researchers say burley tobacco has a number of other targets for their gene silencing method.

The research is sponsored by Philip Morris USA.

Dr. Ralph Dewey | EurekAlert!
Further information:
http://www.ncsu.edu

Further reports about: Lewis burley

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>