Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNAs help zebrafish regenerate fins

18.03.2008
Biologists have discovered a molecular circuit breaker that controls a zebrafish's remarkable ability to regrow missing fins, according to a new study from Duke University Medical Center.

Tiny wonders of the aquarium world, zebrafish can regenerate organs and tissues, including hearts, eye parts and fins. When a fin is lost, the fish regenerates a perfect copy in two weeks by orchestrating the growth of many tissue types, including bone, nerves, blood vessels, connective tissue and skin.

Scientists hope that understanding how zebrafish repair themselves will lead to new treatments for human conditions caused by damaged tissue, such as heart failure, diabetes and spinal cord injuries.

The regeneration regulator is one of a group of recently discovered molecules called microRNAs: small pieces of ribonucleic acid (RNA) that each can potentially control the activity of dozens of different genes. In humans, microRNAs play important roles in cell growth and death, among other functions. There are hundreds of kinds of microRNAs, and scientists are constantly discovering new roles they play.

... more about:
»MicroRNA »Regeneration »Tissue »ability »miR-133 »need »regrowth

In zebrafish, one or more microRNAs appear to be important to keep regeneration on hold until the fish needs new tissue, the Duke researchers say. In response to an injury, the fish then damp down levels of these microRNAs to aid regrowth. The team discovered that the ability of zebrafish to replace amputated fins is particularly sensitive to levels of a particular microRNA called miR-133.

The discovery makes sense because any animal that can rapidly grow new tissue needs to keep the system in check, said senior author Kenneth Poss, Ph.D., assistant professor of cell biology. "They probably need to have mechanisms to reduce the potential for unwelcome growth. The implication is that in order to make human tissue regenerate more effectively, we might want to look at some of these microRNAs as potential targets."

The results appear in the March 15, 2008 issue of the journal Genes & Development. Postdoctoral scholar Viravuth Yin, Ph.D., a member of Poss' lab, is first author on the study. Funding was provided by the National Institutes of Health, the American Heart Association, the Whitehead Foundation and Pew Charitable Trusts.

Poss and many other cell biologists believe that mammals may have the same tissue regeneration capability as zebrafish, salamanders and newts, but that it is locked away somewhere in our genome, silenced in the course of evolution. "The key is finding a way to turn on this regenerative ability in humans," Poss said.

The Duke researchers began their study by ferreting out any microRNAs present in fins at different stages of regrowth, then measuring whether there was a lot or a little of each molecule.

Dr. Poss' team eventually zeroed in on some of the most important microRNAs for regrowth by studying genetically modified zebrafish. The modification allows a critical signaling pathway to be shut down during regeneration. The pathway sends biochemical cues called growth factors that stimulate cell division and organ growth.

Levels of one microRNA in particular, miR-133, dropped during normal regeneration. But when the scientists blocked the signaling pathway briefly during regeneration, the amount of miR-133 jumped back up to the level found in uninjured fins. Further experiments showed that tweaking the concentration of miR-133 affected fin growth. When levels were raised, fin regrowth slowed; when they were dropped, regeneration sped up.

"Our work shows microRNAs appear to have an important role in regenerating complex tissues. Further studies could help us discover potential ways to stimulate this ability in mammals," Poss said.

Debbe Geiger | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: MicroRNA Regeneration Tissue ability miR-133 need regrowth

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>