Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNAs help zebrafish regenerate fins

18.03.2008
Biologists have discovered a molecular circuit breaker that controls a zebrafish's remarkable ability to regrow missing fins, according to a new study from Duke University Medical Center.

Tiny wonders of the aquarium world, zebrafish can regenerate organs and tissues, including hearts, eye parts and fins. When a fin is lost, the fish regenerates a perfect copy in two weeks by orchestrating the growth of many tissue types, including bone, nerves, blood vessels, connective tissue and skin.

Scientists hope that understanding how zebrafish repair themselves will lead to new treatments for human conditions caused by damaged tissue, such as heart failure, diabetes and spinal cord injuries.

The regeneration regulator is one of a group of recently discovered molecules called microRNAs: small pieces of ribonucleic acid (RNA) that each can potentially control the activity of dozens of different genes. In humans, microRNAs play important roles in cell growth and death, among other functions. There are hundreds of kinds of microRNAs, and scientists are constantly discovering new roles they play.

... more about:
»MicroRNA »Regeneration »Tissue »ability »miR-133 »need »regrowth

In zebrafish, one or more microRNAs appear to be important to keep regeneration on hold until the fish needs new tissue, the Duke researchers say. In response to an injury, the fish then damp down levels of these microRNAs to aid regrowth. The team discovered that the ability of zebrafish to replace amputated fins is particularly sensitive to levels of a particular microRNA called miR-133.

The discovery makes sense because any animal that can rapidly grow new tissue needs to keep the system in check, said senior author Kenneth Poss, Ph.D., assistant professor of cell biology. "They probably need to have mechanisms to reduce the potential for unwelcome growth. The implication is that in order to make human tissue regenerate more effectively, we might want to look at some of these microRNAs as potential targets."

The results appear in the March 15, 2008 issue of the journal Genes & Development. Postdoctoral scholar Viravuth Yin, Ph.D., a member of Poss' lab, is first author on the study. Funding was provided by the National Institutes of Health, the American Heart Association, the Whitehead Foundation and Pew Charitable Trusts.

Poss and many other cell biologists believe that mammals may have the same tissue regeneration capability as zebrafish, salamanders and newts, but that it is locked away somewhere in our genome, silenced in the course of evolution. "The key is finding a way to turn on this regenerative ability in humans," Poss said.

The Duke researchers began their study by ferreting out any microRNAs present in fins at different stages of regrowth, then measuring whether there was a lot or a little of each molecule.

Dr. Poss' team eventually zeroed in on some of the most important microRNAs for regrowth by studying genetically modified zebrafish. The modification allows a critical signaling pathway to be shut down during regeneration. The pathway sends biochemical cues called growth factors that stimulate cell division and organ growth.

Levels of one microRNA in particular, miR-133, dropped during normal regeneration. But when the scientists blocked the signaling pathway briefly during regeneration, the amount of miR-133 jumped back up to the level found in uninjured fins. Further experiments showed that tweaking the concentration of miR-133 affected fin growth. When levels were raised, fin regrowth slowed; when they were dropped, regeneration sped up.

"Our work shows microRNAs appear to have an important role in regenerating complex tissues. Further studies could help us discover potential ways to stimulate this ability in mammals," Poss said.

Debbe Geiger | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: MicroRNA Regeneration Tissue ability miR-133 need regrowth

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens

19.10.2017 | Interdisciplinary Research

Fossil coral reefs show sea level rose in bursts during last warming

19.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>