Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bonn Scientists Discover New Haemoglobin Type

Scientists at the University of Bonn have discovered a new rare type of haemo-globin. Haemoglobin transports oxygen in the red blood corpuscles. When bound to oxygen it changes colour. The new haemoglobin type appears optically to be transporting little oxygen.

Measurements of the blood oxygen level therefore present a similar picture to patients suffering from an inherited cardiac defect. After examining two patients, the scientists now understand that the new type of haemoglobin distorts the level of oxygen measured. The scientists have named the type 'Haemoglobin Bonn'. They have published their discovery in the current issue of the scientific journal 'Clinical Chemistry'.

Haemoglobin transports oxygen to the body's cells and in return picks up carbon dioxide there. In doing so it changes colour. With an optical measuring instrument, known as a pulse oximeter, you can therefore measure whether there is enough oxygen present in the blood. The cause of anoxia can be an inherited cardiac defect, for example.

This was also the tentative diagnosis in the case of a four-year-old boy who was admitted to the Paediatric Clinic of the Bonn University Clinic. However, after a thorough examin-ation, the paediatricians Dr. Andreas Hornung and his colleagues did not find any cardiac defect. A low saturation of oxygen had also been previously found in the blood of the boy's 41-year-old father, again without apparent signs of a cardiac defect.

... more about:
»Haemoglobin »Oxygen »cardiac »oximeter

Dr. Berndt Zur from Professor Birgit Stoffel-Wagner’s team at the Institute of Clinical Chemistry and Pharmacology examined the boy's and the father's haemoglobin. He eventually realised that they were dealing with a new type of the blood pigment. 'The pulse oximeter is put on a finger as a clip and X-rays it with infrared radiation,' he explains. 'Haemoglobin absorbs infrared light in the absence of oxygen. The lower the content of oxygen in the blood, the less light penetrates the finger and reaches the sensor of the oximeter.' But Haemoglobin Bonn absorbs a bit more infrared light than normal oxygen saturated haemoglobin, even when combined with oxygen. 'That’s why, at first, we did not understand why the patients did not have any particular health problems,' Dr. Zur says.

Every human has two main heart ventricles. One pumps the blood through the arteries to the lungs, where the haemoglobin releases the carbon dioxide and takes on oxygen. The other one pumps the blood which is saturated with oxygen from the lungs to every cell in the body. Both ventricles must be separated by a wall in the heart, so that the oxygen-rich blood does not mix with the anoxaemic blood. But some people have a hole in this septum. In such cases, the pulse oximeter shows anoxia. Doctors therefore see this as a sign of a cardiac defect. Another cause is what is known as the Apnoea Syndrome. In the patients affected, breathing can cease for more than a minute. That is why the father of the 4-year-old received oxygen treatment at nights for some time. 'If we had known about Haemoglobin Bonn before, father and son could have been spared the fear of a cardiac defect or the Sleep Apnoea Syndrome,' Dr. Zur explains.

Dr. Berndt Zur | alfa
Further information:

Further reports about: Haemoglobin Oxygen cardiac oximeter

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>