Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First ‘rule’ of evolution suggests that life is destined to become more complex

18.03.2008
Scientists have revealed what may well be the first pervasive ‘rule’ of evolution.

In a study published in the Proceedings of the National Academy of Sciences researchers have found evidence which suggests that evolution drives animals to become increasingly more complex.

Looking back through the last 550 million years of the fossil catalogue to the present day, the team investigated the different evolutionary branches of the crustacean family tree.

They were seeking examples along the tree where animals evolved that were simpler than their ancestors.

... more about:
»Evolution »Life »branches »complexity »crustacean

Instead they found organisms with increasingly more complex structures and features, suggesting that there is some mechanism driving change in this direction.

“If you start with the simplest possible animal body, then there’s only one direction to evolve in – you have to become more complex,” said Dr Matthew Wills from the Department of Biology & Biochemistry at the University of Bath who worked with colleagues Sarah Adamowicz from from the University of Waterloo (Canada) and Andy Purvis from Imperial College London.

“Sooner or later, however, you reach a level of complexity where it’s possible to go backwards and become simpler again.

“What’s astonishing is that hardly any crustaceans have taken this backwards route.

“Instead, almost all branches have evolved in the same direction, becoming more complex in parallel.

“This is the nearest thing to a pervasive evolutionary rule that’s been found.

“Of course, there are exceptions within the crustacean family tree, but most of these are parasites, or animals living in remote habitats such as isolated marine caves.

“For those free-living animals in the ‘rat-race’ of evolution, it seems that competition may be the driving force behind the trend.

“What’s new about our results is that they show us how this increase in complexity has occurred.

“Strikingly, it looks far more like a disciplined march than a milling crowd.”

Dr Adamowicz said: “Previous researchers noticed increasing morphological complexity in the fossil record, but this pattern can occur due to the chance origination of a few new types of animals.

“Our study uses information about the inter-relatedness of different animal groups – the ‘Tree of Life’ – to demonstrate that complexity has evolved numerous times independently.”

Like all arthropods, crustaceans’ bodies are built up of repeating segments. In the simplest crustaceans, the segments are quite similar - one after the other. In the most complex, such as shrimps and lobsters, almost every segment is different, bearing antennae, jaws, claws, walking legs, paddles and gills.

The American biologist Leigh Van Valen coined the phrase ‘Red Queen’ for the evolutionary arms race phenomenon. In Through the Looking-Glass Lewis Carroll’s Red Queen advises Alice that: “It takes all the running you can do, to keep in the same place.”

“Those crustacean groups going extinct tended to be less complex than the others around at the time,” said Dr Wills.

“There’s even a link between average complexity within a group and the number of species alive today.

“All organisms have a common ancestor, so that every living species is part of a giant family tree of life.”

Dr Adamowicz added: “With a few exceptions, once branches of the tree have separated they continue to evolve independently.

“Looking at many independent branches is similar to viewing multiple repeated runs of the tape of evolution.

“Our results apply to a group of animals with bodies made of repeated units. We must not forget that bacteria – very simple organisms – are among the most successful living things. Therefore, the trend towards complexity is compelling but does not describe the history of all life.”

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/news/2008/3/17/ruleevolution.html

Further reports about: Evolution Life branches complexity crustacean

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>