Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First ‘rule’ of evolution suggests that life is destined to become more complex

18.03.2008
Scientists have revealed what may well be the first pervasive ‘rule’ of evolution.

In a study published in the Proceedings of the National Academy of Sciences researchers have found evidence which suggests that evolution drives animals to become increasingly more complex.

Looking back through the last 550 million years of the fossil catalogue to the present day, the team investigated the different evolutionary branches of the crustacean family tree.

They were seeking examples along the tree where animals evolved that were simpler than their ancestors.

... more about:
»Evolution »Life »branches »complexity »crustacean

Instead they found organisms with increasingly more complex structures and features, suggesting that there is some mechanism driving change in this direction.

“If you start with the simplest possible animal body, then there’s only one direction to evolve in – you have to become more complex,” said Dr Matthew Wills from the Department of Biology & Biochemistry at the University of Bath who worked with colleagues Sarah Adamowicz from from the University of Waterloo (Canada) and Andy Purvis from Imperial College London.

“Sooner or later, however, you reach a level of complexity where it’s possible to go backwards and become simpler again.

“What’s astonishing is that hardly any crustaceans have taken this backwards route.

“Instead, almost all branches have evolved in the same direction, becoming more complex in parallel.

“This is the nearest thing to a pervasive evolutionary rule that’s been found.

“Of course, there are exceptions within the crustacean family tree, but most of these are parasites, or animals living in remote habitats such as isolated marine caves.

“For those free-living animals in the ‘rat-race’ of evolution, it seems that competition may be the driving force behind the trend.

“What’s new about our results is that they show us how this increase in complexity has occurred.

“Strikingly, it looks far more like a disciplined march than a milling crowd.”

Dr Adamowicz said: “Previous researchers noticed increasing morphological complexity in the fossil record, but this pattern can occur due to the chance origination of a few new types of animals.

“Our study uses information about the inter-relatedness of different animal groups – the ‘Tree of Life’ – to demonstrate that complexity has evolved numerous times independently.”

Like all arthropods, crustaceans’ bodies are built up of repeating segments. In the simplest crustaceans, the segments are quite similar - one after the other. In the most complex, such as shrimps and lobsters, almost every segment is different, bearing antennae, jaws, claws, walking legs, paddles and gills.

The American biologist Leigh Van Valen coined the phrase ‘Red Queen’ for the evolutionary arms race phenomenon. In Through the Looking-Glass Lewis Carroll’s Red Queen advises Alice that: “It takes all the running you can do, to keep in the same place.”

“Those crustacean groups going extinct tended to be less complex than the others around at the time,” said Dr Wills.

“There’s even a link between average complexity within a group and the number of species alive today.

“All organisms have a common ancestor, so that every living species is part of a giant family tree of life.”

Dr Adamowicz added: “With a few exceptions, once branches of the tree have separated they continue to evolve independently.

“Looking at many independent branches is similar to viewing multiple repeated runs of the tape of evolution.

“Our results apply to a group of animals with bodies made of repeated units. We must not forget that bacteria – very simple organisms – are among the most successful living things. Therefore, the trend towards complexity is compelling but does not describe the history of all life.”

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/news/2008/3/17/ruleevolution.html

Further reports about: Evolution Life branches complexity crustacean

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>