Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spread of Bird Flu Strains Slowed at Some Borders

27.02.2008
Study Results Detail H5N1 Migration, Provide Means to Measure Intervention Success

Several strains of the bird flu virus that raged across southern China were blocked from entering Thailand and Vietnam, UC Irvine researchers have discovered.

This first-ever statistical analysis of influenza A H5N1’s genetic diversity helps scientists better understand how the virus migrates and could, in the future, help health officials determine whether efforts to thwart its spread were successful.

“Some countries appear more exposed to bird flu invasion than others. Learning that is a good step in discovering which social and ecological factors promote, or, on the other hand, hamper the virus’ spread,” said Robert G. Wallace, a postdoctoral researcher and lead author of the study.

... more about:
»H5N1 »PLoS »Researcher »Virus »flu

The results appear online Feb. 27 in the journal PLoS ONE.

Since its emergence in 1996, H5N1 has only sporadically been passed from birds to humans. Although only about 350 human cases of this influenza have been recorded worldwide, its high mortality rate raises concerns that if the virus mutates in such a way that humans can pass it on, a deadly flu pandemic may result. More than 60 percent of humans who contract the virus die from it.

In this study, Wallace and Walter M. Fitch, professor of ecology and evolutionary biology at UCI, analyzed nearly 500 publicly available genetic sequences of proteins found on the surface of the influenza virus. These sequences originally were collected from 28 Eurasian and African localities through 2006.

The study also showed that H5N1 strains circulating in Indonesia, Japan, Thailand and Vietnam shared the most evolutionary history with H5N1 circulating in several provinces in southern China. The provinces, Guangdong, Fujian and Hong Kong, are engaged in intensive international trade, including poultry. Previous research has concluded the poultry trade is a key mechanism for the spread of the H5N1 virus.

The researchers suggest that health officials trying to block new strains of the virus from spreading could use the methods employed in this study to determine whether interventions are working.

“You can think of it as a type of evolutionary forensics,” Wallace said. “When a bomb explodes, investigators can determine how many charges went off and the strength and direction of the blast, all from the resulting damage alone. Here we can determine the way H5N1 has spread and evolved by the resulting viral diversity.”

The National Institutes of Health funded the study.

Disclaimer
The following press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

Rebecca Walton | alfa
Further information:
http://www.plosone.org/doi/pone.0001697

Further reports about: H5N1 PLoS Researcher Virus flu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>