Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Spread of Bird Flu Strains Slowed at Some Borders

Study Results Detail H5N1 Migration, Provide Means to Measure Intervention Success

Several strains of the bird flu virus that raged across southern China were blocked from entering Thailand and Vietnam, UC Irvine researchers have discovered.

This first-ever statistical analysis of influenza A H5N1’s genetic diversity helps scientists better understand how the virus migrates and could, in the future, help health officials determine whether efforts to thwart its spread were successful.

“Some countries appear more exposed to bird flu invasion than others. Learning that is a good step in discovering which social and ecological factors promote, or, on the other hand, hamper the virus’ spread,” said Robert G. Wallace, a postdoctoral researcher and lead author of the study.

... more about:
»H5N1 »PLoS »Researcher »Virus »flu

The results appear online Feb. 27 in the journal PLoS ONE.

Since its emergence in 1996, H5N1 has only sporadically been passed from birds to humans. Although only about 350 human cases of this influenza have been recorded worldwide, its high mortality rate raises concerns that if the virus mutates in such a way that humans can pass it on, a deadly flu pandemic may result. More than 60 percent of humans who contract the virus die from it.

In this study, Wallace and Walter M. Fitch, professor of ecology and evolutionary biology at UCI, analyzed nearly 500 publicly available genetic sequences of proteins found on the surface of the influenza virus. These sequences originally were collected from 28 Eurasian and African localities through 2006.

The study also showed that H5N1 strains circulating in Indonesia, Japan, Thailand and Vietnam shared the most evolutionary history with H5N1 circulating in several provinces in southern China. The provinces, Guangdong, Fujian and Hong Kong, are engaged in intensive international trade, including poultry. Previous research has concluded the poultry trade is a key mechanism for the spread of the H5N1 virus.

The researchers suggest that health officials trying to block new strains of the virus from spreading could use the methods employed in this study to determine whether interventions are working.

“You can think of it as a type of evolutionary forensics,” Wallace said. “When a bomb explodes, investigators can determine how many charges went off and the strength and direction of the blast, all from the resulting damage alone. Here we can determine the way H5N1 has spread and evolved by the resulting viral diversity.”

The National Institutes of Health funded the study.

The following press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

Rebecca Walton | alfa
Further information:

Further reports about: H5N1 PLoS Researcher Virus flu

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>