Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notch controls bone formation and strength

26.02.2008
Notch, a protein known to govern the determination of cell differentiation into different kinds of tissues in embryos, plays a critical role in bone formation and strength later in life, said researchers from Baylor College of Medicine in Houston in a report that appears online today in the journal Nature Medicine. Their findings may provide a basis for understanding osteoporosis and in diseases in which there is too much bone.

“We knew that Notch is important in patterning the skeleton,” said Dr. Brendan Lee, professor of molecular and human genetics and pediatrics at BCM and a Howard Hughes Medical Institute investigator. “After this initial patterning of the skeleton, we saw a dimorphic or two-pronged function for Notch. If there was an increase of Notch activity in bone cells, we get a lot more bone. Notch stimulates early proliferation of osteoblastic cells (cells responsible for bone formation). However, when they ‘knocked out’ the Notch function in such cells in the laboratory, they found osteoporosis or the loss of bone, similar to age-related osteoporosis in humans.”

“Mice had an acceptable amount of bone at birth, but as they got older, they lost more and more bone,” said Lee, senior author of the report. “Loss of Notch signaling might relate to what happens when we get older.”

They found that the osteoblasts, which promote bone formation, worked fine when they abolished Notch function in bone forming cells. However, the animals lacked the ability to regulate activity of osteoclasts, whose primary function is to resorb or remove bone. Many women who have osteoporosis actually have a similar problem, an imbalance of bone formation vs. bone resorption. They make enough bone but they resorb bone cells at an abnormally high rate.

... more about:
»Notch »formation »osteoporosis »skeleton

In the laboratory, Lee and his colleagues found that when animals were bred to lack Notch, they lost also the ability to suppress bone resorption. That balance between bone formation and resorption allows organisms to maintain a healthy skeleton.

Future studies may look at the possiblity that loss of Notch interferes with the natural signal between osteoblasts and osteoclasts (bone resorbing cells) and prevents the homeostasis or natural balance between the two.

That means the protein Notch and the cellular pathways that express and control it might be targets for drugs to treat bone disorders, said Lee, also a researcher in the Dan L. Duncan Cancer Center at BCM.

The work demonstrates the importance of going from patients to the laboratory and back again, he said. This study began with patients who suffer from a problem called spondylocostal dysplasia. These children and adults have problems with the pattern of their spine. They have fusions of parts of the spine or ribs. Several years ago, other scientists showed that a mutation of the pathway for Notch causes some of these problems. “Our care of these patients suggested to us that Notch may have important function even after the establishment of this initial pattern of the skeleton.”

Notch also plays a role in other disorders, including those of the blood and cancer.

“Notch is important in the blood system,” said Lee. “It regulates whether a stem cell becomes a ‘T’ or a ‘B’ cell. When Notch is mutated in the blood system, it causes cancer.”

That knowledge led him and his colleagues to look at the protein in bone.

“This is a complex system and it is why personalized medicine is important,” said Lee. “By identifying all of the major (cellular) pathways that contribute to a specific trait or feature like bone mass in each person, we could one day develop therapies specific for that person.”

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu
http://www.nature.com/nm/index.html

Further reports about: Notch formation osteoporosis skeleton

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>