Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notch controls bone formation and strength

26.02.2008
Notch, a protein known to govern the determination of cell differentiation into different kinds of tissues in embryos, plays a critical role in bone formation and strength later in life, said researchers from Baylor College of Medicine in Houston in a report that appears online today in the journal Nature Medicine. Their findings may provide a basis for understanding osteoporosis and in diseases in which there is too much bone.

“We knew that Notch is important in patterning the skeleton,” said Dr. Brendan Lee, professor of molecular and human genetics and pediatrics at BCM and a Howard Hughes Medical Institute investigator. “After this initial patterning of the skeleton, we saw a dimorphic or two-pronged function for Notch. If there was an increase of Notch activity in bone cells, we get a lot more bone. Notch stimulates early proliferation of osteoblastic cells (cells responsible for bone formation). However, when they ‘knocked out’ the Notch function in such cells in the laboratory, they found osteoporosis or the loss of bone, similar to age-related osteoporosis in humans.”

“Mice had an acceptable amount of bone at birth, but as they got older, they lost more and more bone,” said Lee, senior author of the report. “Loss of Notch signaling might relate to what happens when we get older.”

They found that the osteoblasts, which promote bone formation, worked fine when they abolished Notch function in bone forming cells. However, the animals lacked the ability to regulate activity of osteoclasts, whose primary function is to resorb or remove bone. Many women who have osteoporosis actually have a similar problem, an imbalance of bone formation vs. bone resorption. They make enough bone but they resorb bone cells at an abnormally high rate.

... more about:
»Notch »formation »osteoporosis »skeleton

In the laboratory, Lee and his colleagues found that when animals were bred to lack Notch, they lost also the ability to suppress bone resorption. That balance between bone formation and resorption allows organisms to maintain a healthy skeleton.

Future studies may look at the possiblity that loss of Notch interferes with the natural signal between osteoblasts and osteoclasts (bone resorbing cells) and prevents the homeostasis or natural balance between the two.

That means the protein Notch and the cellular pathways that express and control it might be targets for drugs to treat bone disorders, said Lee, also a researcher in the Dan L. Duncan Cancer Center at BCM.

The work demonstrates the importance of going from patients to the laboratory and back again, he said. This study began with patients who suffer from a problem called spondylocostal dysplasia. These children and adults have problems with the pattern of their spine. They have fusions of parts of the spine or ribs. Several years ago, other scientists showed that a mutation of the pathway for Notch causes some of these problems. “Our care of these patients suggested to us that Notch may have important function even after the establishment of this initial pattern of the skeleton.”

Notch also plays a role in other disorders, including those of the blood and cancer.

“Notch is important in the blood system,” said Lee. “It regulates whether a stem cell becomes a ‘T’ or a ‘B’ cell. When Notch is mutated in the blood system, it causes cancer.”

That knowledge led him and his colleagues to look at the protein in bone.

“This is a complex system and it is why personalized medicine is important,” said Lee. “By identifying all of the major (cellular) pathways that contribute to a specific trait or feature like bone mass in each person, we could one day develop therapies specific for that person.”

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu
http://www.nature.com/nm/index.html

Further reports about: Notch formation osteoporosis skeleton

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>