Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Honey Bee Invaders Exploit The Genetic Resources of Their Predecessors

26.02.2008
Like any species that aspires to rule the world, the honey bee, Apis mellifera, invades new territories in repeated assaults. A new study demonstrates that when these honey bees arrive in a place that has already been invaded, the newcomers benefit from the genetic endowment of their predecessors. The findings appear this week in Proceedings of the National Academy of Sciences.

The researchers, University of Illinois entomology professor Charles Whitfield and postdoctoral researcher Amro Zayed, analyzed specific markers of change in the genes of honey bees in Africa, Europe, Asia, and the Americas. They also focused on geographic regions – such as Brazil in South America – where multiple honey bee invasions had occurred.

The researchers were looking for tiny variations in the sequences of nucleotides that make up all genes. Certain versions of these single nucleotide polymorphisms (SNPs, or “snips”) are more common to African honey bees, while others occur more frequently in honey bees in western Europe, eastern Europe, or Asia.

By comparing these SNPs in bees from different geographic territories, and by looking at the frequency at which particular alleles, or variants, occur in functional and nonfunctional parts of the honey bee genome, the researchers were able to determine that the invading bees were not just randomly acquiring genetic material from their predecessors by interbreeding with them, but that certain genes from the previously introduced bees were giving the newcomers an advantage.

An earlier study led by Whitfield and published in Science in 2006 showed that A. mellifera originated in Africa and not Asia, as some had previously hypothesized.

That study revealed that the honey bee had expanded its territory into Eurasia at least twice, resulting in populations in eastern and western Europe that were quite different from one another.

The earlier analysis also confirmed and extended results of previous studies showing that African honey bees had mixed with but largely displaced their predecessors in the New World, which were primarily of western European stock. When the European old-timers mixed with the African newcomers, their offspring looked, and in most respects behaved, like the African honey bees.

These more aggressive, “Africanized” bees (so-called “killer bees”) received a lot of media attention in the U.S. as they moved north from South America. According to the U.S. Department of Agriculture, the first Africanized honey bees appeared in Texas in 1990. In less than a decade they had also spread to southern California, Arizona, Nevada and New Mexico.

Whitfield and Zayed wanted to understand the evolutionary mechanism that allowed the African honey bees to move into these new territories and dominate the bees that had arrived in the New World centuries earlier from eastern and western Europe.

Their analysis of about 440 SNPs selected randomly from throughout the Africanized honey bee genome showed that most of the alleles were common to African honey bees. But of the alleles common to European bees, those found in functional parts of the genome (in genes) were showing up more frequently than those in nonfunctional regions (between genes).

“We asked the question: Is hybridization an essentially random process?” Zayed said. When the African honey bees mated with the western European honey bees that had been in South America for centuries, one might expect that the hybrid offspring would randomly pick up both the functional and nonfunctional parts of the genome, he said.

“But actually what we found was there was a preference for picking up functional parts of the western European genome over the nonfunctional parts.”

It appeared that the Africanized bees that kept some of the functional western European genes were gaining an advantage, Whitfield said.

“Those African bees are doing better because there were western European honey bees there for them to mix with,” he said. “Now we can say we have a signature for evolution in the genome.”

While the researchers do not yet know how these European honey bee genes are enhancing the survival and fitness of the Africanized bees in the Americas, Whitfield said, it may be that specific traits from western Europe are beneficial, or it may be that being a hybrid is, in and of itself, a good thing for these bees.

In a separate finding, the researchers also discovered a genomewide signature of evolution associated with the ancient expansion of honey bees from Africa into temperate regions of western and northern Europe. In this expansion, functional parts of the genome have changed more than nonfunctional parts. Whitfield thinks that these changes may involve social adaptations to survive the hard winters.

“The way the honey bees survive in temperate regions is sort of the way humans do,” Whitfield said. “They have a shelter. They store resources.”

Not needing to survive in such cold weather, African bees store less food and reproduce more.

“So how does an animal that’s basically tropical make it? How does it expand its territory and thrive in very harsh winter conditions in this temperate region?” Whitfield asked. “Humans did it, and Apis mellifera did it in some interestingly parallel ways.”

Whitfield is also an affiliate of the Institute for Genomic Biology.

Diana Yates | University of Illinois
Further information:
http://www.uiuc.edu

Further reports about: Africa Africanized Functional Genome SNP Whitfield nonfunctional western

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>