Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New understanding of how big molecules bind will lead to better drugs, synthetic organic materials

25.02.2008
Bacteria can be made to spin spider silk

Biological and medical research is on the threshold of a new era based on better understanding of how large organic molecules bind together and recognise each other. There is great potential for exploiting the molecular docking processes that are commonplace in all organisms to develop new drugs that act more specifically without adverse side effects, and construct novel materials by mimicking nature.

A recent workshop on Biosupramolecular Chemistry organised by the European Science Foundation (ESF) strengthened Europe’s platform for progress towards these goals by bringing together scientists in the relevant fields and identifying key research targets. The workshop also identified some applications close to fruition, including the engineering of bacteria to produce silks as strong for their thickness as spider webs. It has been a longstanding challenge to emulate the mechanical properties of spider silk, which combines stiffness and tensile strength with the ability to become elastic under high strains to protect against destruction. A recent project led by Thomas Scheibel at the Technical University of Munich is close to a solution that could have a host of practical applications ranging from biodegradable fishing line to body armour.

The artificial spider silk production exemplified the expertise and skills required for successful applications in biosupramolecular chemistry, in this case by combining genetic engineering with sophisticated micro-manipulation techniques to optimise production of the desired material. Firstly genes were inserted into the bacteria to produce proteins as similar as possible to spider silk. Then microfluidic approaches, dealing with fluids at very small scales, were used to fabricate the silk. Finally the mechanical properties were optimised further by substituting some of the amino acid components of the proteins.

... more about:
»Component »ESF »Molecules »Organic »interactions »silk

Other applications of biosupramolecular chemistry are further off, but coming into range, according to the ESF workshop convenor, Professor Anthony Davis from Bristol University in the UK. But the most important aspect of the ESF workshop was the bringing together of scientists in two previously distinct fields, said Davis. “Our main aim was to get two groups of scientists talking to each other - the supramolecular chemists, and a group of biologists who might be termed ‘biomolecular engineers’,” said Davis. “Certainly this objective was fulfilled.” Supramolecular chemists study and manipulate the interactions between molecules in general, while biomolecular engineers specialise in exploiting the large organic molecules found in Nature.

Biological macromolecules include proteins comprising amino acids, complex carbohydrates made from simpler sugar molecules, as well as both RNA and DNA made from nucleic acids. Unlike small molecules, these large constructions exhibit multiple chemical properties at different parts of their surface, which means that interactions between them depend on geometrical features. It is the geometrical arrangement of the component parts, as much as their chemical identity, that determines how a macromolecule will behave and interact with other molecules both large and small. Some molecules will only react or bind with certain others, often temporarily, on a “lock and key” basis determined by the relative shapes of the surface. Such transient associations between large molecules (supramolecules) are very important in biology, for example in the binding between antibodies and antigens in the immune response, and also between an enzyme and its substrate, i.e. the compound it is acting upon.

These looser interactions between large molecules are called non-covalent because they do not involve sharing of electrons, but instead exploit variations in electrical charge distribution in their vicinity. Since each individual bond is weak, non-covalent bonding relies on the collective strength of multiple bonds and is therefore only a viable mechanism for joining larger molecules together.

As well as being important for temporary binding, non-covalent bonding forces are also essential for maintaining the structure of large proteins, and for the DNA double helix, on a longer term basis, by holding the components together. This is a very complex subject given the huge number of combinations of components involved, and so a significant advance reported at the ESF Biosupramolecular conference by Andrei Lupas from the Max Planck Institute for Developmental Biology in Germany was of a dictionary representing proteins by motifs, that is smaller coherent arrangements of its constituent amino acids, derived from studying their evolutionary history. Lupas showed how such a dictionary could be used to derive evolutionary relationships between proteins. This could have great application in evolutionary biology and also for determining the role of proteins whose function is as yet largely unknown, as well as understanding diseases where protein interactions go wrong.

Having identified many promising avenues of research, the ESF workshop is likely to be followed up by further meetings, according to Davis.”We hope to organise another meeting in 2009, and maybe keep going to create a regular series of symposia.”

Anthony Davis | EurekAlert!
Further information:
http://www.bristol.ac.uk

Further reports about: Component ESF Molecules Organic interactions silk

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>