Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No loose ends

25.02.2008
Tying short RNA molecules into loops gives them a stability boost, which could lead to more effective therapeutic strategies for modulating gene expression

Among the most powerful molecular biology techniques to emerge in recent years is RNA interference, in which small interfering RNA (siRNA) molecules are used to target specific genes to reduce their expression in living organisms. siRNAs have delivered considerable precision and efficiency in modulating gene expression in the laboratory, and many see considerable promise in clinical applications of this technology, although serious technical roadblocks remain to be overcome.

Chief among these is finding a safe and effective means for siRNA delivery. Simple injection of siRNAs is not an option, as RNA is rapidly degraded in the body, and so more complicated strategies are required—each with its own issues.

“Virus vectors that proliferate in vivo are potentially risky … vector systems can not be controlled in cells, and the dose of RNA is very important for clinical RNA interference,” explains Hiroshi Abe, a research scientist in Yoshihiro Ito’s laboratory at the RIKEN Discovery Research Institute in Wako. “If excess RNA is administered, cells respond to foreign body using the immune system.” Another possibility involves the use of chemically modified RNAs that can survive longer within the body, but Abe points out that this stability comes at the cost of reduced efficacy at gene silencing.

... more about:
»RNA »dumbbell »siRNA

Since RNA-degrading enzymes typically start by chewing at loose RNA ends, Ito’s team has taken an innovative approach to deliver natural RNA effectively—they circularized their siRNAs (Fig. 1), designing molecules that self-assembled into stable ‘dumbbell’ shapes1. Since siRNAs begin as double-stranded precursors that must be processed by the enzyme Dicer before they can be effective, a key concern of the team was ensuring that their dumbbell constructs were not just stable, but also capable of being processed by Dicer. The dumbbells performed well on both counts; they outlasted linear siRNA molecules in human serum, and also surpassed linear molecules at triggering specific inhibition of targeted genes when injected into cultured human fibroblast cells.

Encouraged by these initial findings, Ito, Abe and colleagues are now looking into strategies to further enhance the effectiveness of their constructs. These extra-stable dumbbells are also more resistant to processing by Dicer, which reduces their inhibitory capabilities, and Abe indicates that optimizing the dumbbell’s loop structure is now a top priority. In parallel, the researchers are also exploring new methods for siRNA synthesis that could make it easier to scale up production for future studies.

Reference

1. Abe, N., Abe, H. & Ito, Y. Dumbbell-shaped nanocircular RNAs for RNA interference. Journal of the American Chemical Society 129, 15108–15109 (2007).

Saeko Okada | ResearchSEA
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: RNA dumbbell siRNA

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>