Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a new switch of the immune response

21.02.2008
At the Institut Curie, Inserm researchers, in collaboration with collegues from Dynavax(1), have discovered a new mechanism controlling the choice in humans between two lines of defence in the event of attack. In the presence of viruses or bacteria, the immune system can trigger a response that is rapid but devoid of memory – innate immunity – or a response that takes longer to put in place but is more specifically targeted – adaptive immunity.

The essential prerequisite to the proper functioning of innate immunity is the “turning on” of the protein PI3-kinase. Once PI3-kinase is activated, the immune response is triggered, leading to the production of type I interferons, the spearhead of innate immunity, which destroy the body’s invaders. This discovery opens up new therapeutic prospects since it may suggest ways of restoring the function of innate immunity, which is overactivated in autoimmune diseases and inhibited in certain cancers. This work is published in the 18 February 2008 issue of the Journal of Experimental Medicine.

The body is often faced with attacks from outside (viral or bacterial infection) and sometimes from inside, because of the dysfunction of its own cells (cancer), and defends itself by activating its immune system. There are two types of defence. The first is innate immunity: this has no memory, and is permanently on guard to detect and destroy abnormal cells, tumor cells, or virus-infected cells. The second, which takes longer to initiate, is adaptive immunity, which specifically targets an invader. This response requires a education phase during which the cells of the immune system learn to recognize their enemy.

Dendritic cells, the body’s “sentinels”, are the first line of defence against invading pathogens: they recognize viruses and bacteria and then trigger an immune response, which, depending on the case, may be innate or adaptive. In response to an intruder, the so-called plasmacytoid dendritic cells can either produce large amounts of interferons, molecules that trigger a rapid response against viral infections, or “specialize” and become cells able to teach the immune system to recognize the pathogens.

At the Institut Curie, Vassili Soumelis(2) and his team (“Immunity and Cancer”, Inserm/Institut Curie Unit 653) have discovered how the dendritic cells choose between the two types of immune response. First, whatever the response, the presence of an intruder stimulates the TLR receptor inside the dendritic cells. Only then is the choice made between the two types of response. The PI3-kinase signaling pathway is activated, and the innate response is triggered. Kinase PI3 is the switch that turns on a whole cascade of proteins inside the cell. Information on the presence of an intruder in the body is thus transmitted to its final destination, in the cell’s nucleus, where the protein IRF-7 (transcription factor) modifies the expression of specific genes and so alters the cell’s behavior. In this specific case, IRF-7 induces the production of type 1 interferons (interferon-alpha, for example), which will bring about the destruction of the viruses and strongly activate various cells of the immune system.

Vassili Soumelis MD, PhD at the Institut Curie explains: “Activation of the protein PI3-kinase is one of the very first steps needed for the production of large quantities of type 1 interferons, leading to the triggering or strengthening of the innate immune response.”

In certain autoimmune diseases, like systemic lupus erythematosus(3) or Sjögren’s syndrome(4), this innate response overstimulated, leading to an abnormal defense reaction of the immune system, which attacks its own cells, tissues, or organs. In some cancers, on the other hand, the innate response is virtually absent.

It may be that the cancer cells are able to block the PI3-kinase signaling pathway. Through this discovery, Vassili Soumelis and his collaborators hope, in time, to develop new treatments for use in autoimmune diseases and oncology. By acting on PI3-kinase, it may be possible to adapt the innate response, so as to inhibit it in the treatment of autoimmune diseases and boost it in cancer treatment.

Céline Giustranti | alfa
Further information:
http://www.curie.fr

Further reports about: PI3-kinase attack autoimmune autoimmune diseases immune system immunity innate interferons

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>