Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery of a new switch of the immune response

At the Institut Curie, Inserm researchers, in collaboration with collegues from Dynavax(1), have discovered a new mechanism controlling the choice in humans between two lines of defence in the event of attack. In the presence of viruses or bacteria, the immune system can trigger a response that is rapid but devoid of memory – innate immunity – or a response that takes longer to put in place but is more specifically targeted – adaptive immunity.

The essential prerequisite to the proper functioning of innate immunity is the “turning on” of the protein PI3-kinase. Once PI3-kinase is activated, the immune response is triggered, leading to the production of type I interferons, the spearhead of innate immunity, which destroy the body’s invaders. This discovery opens up new therapeutic prospects since it may suggest ways of restoring the function of innate immunity, which is overactivated in autoimmune diseases and inhibited in certain cancers. This work is published in the 18 February 2008 issue of the Journal of Experimental Medicine.

The body is often faced with attacks from outside (viral or bacterial infection) and sometimes from inside, because of the dysfunction of its own cells (cancer), and defends itself by activating its immune system. There are two types of defence. The first is innate immunity: this has no memory, and is permanently on guard to detect and destroy abnormal cells, tumor cells, or virus-infected cells. The second, which takes longer to initiate, is adaptive immunity, which specifically targets an invader. This response requires a education phase during which the cells of the immune system learn to recognize their enemy.

Dendritic cells, the body’s “sentinels”, are the first line of defence against invading pathogens: they recognize viruses and bacteria and then trigger an immune response, which, depending on the case, may be innate or adaptive. In response to an intruder, the so-called plasmacytoid dendritic cells can either produce large amounts of interferons, molecules that trigger a rapid response against viral infections, or “specialize” and become cells able to teach the immune system to recognize the pathogens.

At the Institut Curie, Vassili Soumelis(2) and his team (“Immunity and Cancer”, Inserm/Institut Curie Unit 653) have discovered how the dendritic cells choose between the two types of immune response. First, whatever the response, the presence of an intruder stimulates the TLR receptor inside the dendritic cells. Only then is the choice made between the two types of response. The PI3-kinase signaling pathway is activated, and the innate response is triggered. Kinase PI3 is the switch that turns on a whole cascade of proteins inside the cell. Information on the presence of an intruder in the body is thus transmitted to its final destination, in the cell’s nucleus, where the protein IRF-7 (transcription factor) modifies the expression of specific genes and so alters the cell’s behavior. In this specific case, IRF-7 induces the production of type 1 interferons (interferon-alpha, for example), which will bring about the destruction of the viruses and strongly activate various cells of the immune system.

Vassili Soumelis MD, PhD at the Institut Curie explains: “Activation of the protein PI3-kinase is one of the very first steps needed for the production of large quantities of type 1 interferons, leading to the triggering or strengthening of the innate immune response.”

In certain autoimmune diseases, like systemic lupus erythematosus(3) or Sjögren’s syndrome(4), this innate response overstimulated, leading to an abnormal defense reaction of the immune system, which attacks its own cells, tissues, or organs. In some cancers, on the other hand, the innate response is virtually absent.

It may be that the cancer cells are able to block the PI3-kinase signaling pathway. Through this discovery, Vassili Soumelis and his collaborators hope, in time, to develop new treatments for use in autoimmune diseases and oncology. By acting on PI3-kinase, it may be possible to adapt the innate response, so as to inhibit it in the treatment of autoimmune diseases and boost it in cancer treatment.

Céline Giustranti | alfa
Further information:

Further reports about: PI3-kinase attack autoimmune autoimmune diseases immune system immunity innate interferons

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>