Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT gene research may explain autistic savants

13.02.2008
Mice lacking a certain brain protein learn some tasks better but also forget faster, according to new research from MIT that may explain the phenomenon of autistic savants in humans. The work could also result in future treatments for autism and other brain development disorders.

Researchers at the Picower Institute for Learning and Memory at MIT report in the Feb. 13 issue of the Journal of Neuroscience that mice genetically engineered to lack a key protein used for building synapses-the junctions through which brain cells communicate-actually learned a spatial memory task faster and better than normal mice. But when tested weeks later, they couldn't remember what they had learned as well as normal mice, and they had trouble remembering contexts that should have provoked fear.

"These opposite effects on different types of learning are reminiscent of the mixed features of autistic patients, who may be disabled in some cognitive areas but show enhanced abilities in others," said Albert Y. Hung, a postdoctoral associate at the Picower Institute, staff neurologist at Massachusetts General Hospital and co-author of the study. "The superior learning ability of these mutant mice in a specific realm is reminiscent of human autistic savants."

Autism is one of a group of developmental disabilities known as autism spectrum disorders (ASDs), in which a person's ability to communicate and interact with others is impaired. The Centers for Disease Control and Prevention estimates that one in 150 American children has an ASD. Occasionally, an autistic person has an outstanding skill, such as an incredible rote memory or musical ability. Such individuals-like the character Dustin Hoffman played in the film Rain Man-may be referred to as autistic savants.

Hung said that while it seems counterintuitive that loss of an important synaptic scaffold protein would result in improved learning among the mice in this study, the absence of this protein may "trap" the mice's synapses in a more plastic state, which means the synapses are ready to respond to input but not maintain it in long-term memory.

Aberrant synapse development and faulty structure of dendritic spines-tiny protrusions on the surface of neurons that receive messages from other neurons-are often associated with neurodevelopmental disorders, including autism, in humans.

Hung; Morgan H. Sheng, MIT's Menicon Professor of Neuroscience; and colleagues investigated the role in brain development and cognitive function of a protein called Shank1. Shank1 is one member of a family of proteins that act as structural scaffolds linking together different components of the synapse. In humans, mutations in the closely related protein Shank3 have been linked to the autism spectrum of disorders characterized by impaired social interaction, absent or delayed language development and repetitive behaviors.

The mice in the study had smaller dendritic spines and weaker brain synapses. Their enhanced spatial learning is similar to that of mice engineered to have a mutation in another protein-neuroligin3-that binds directly to Shank1 and is also associated with autism. "We speculate that enhanced spatial learning might be a common feature of mouse models of autism, and that it might reflect a pathological elevation of brain plasticity in the human disease," Hung and Sheng wrote.

In addition to Hung and Sheng, a Howard Hughes Medical Institute (HHMI) investigator, MIT authors are Picower Institute research scientist Kensuke Futai; MIT biology graduate student Jubin Ryu; MIT biology undergraduate Mollie A. Woodworth, Picower Institute postdoctoral fellow Fleur L. Kidd; Picower Institute research assistant Clifford Sung; and Mark F. Bear, Picower Professor of Neuroscience, HHMI investigator and director of the Picower Institute. Additional authors are from the University of Milan, the University of North Carolina at Chapel Hill, and Fujita Health University in Japan.

This work was supported by the RIKEN-MIT Neuroscience Research Center, the National Institutes of Health and HHMI.

Written by Deborah Halber, Picower Institute for Learning and Memory at MIT

Elizabeth A. Thomson | MIT News Office
Further information:
http://web.mit.edu/newsoffice/www

Further reports about: Autism Brain Neuroscience Picower Synapse autistic disorders savants

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>