Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT gene research may explain autistic savants

13.02.2008
Mice lacking a certain brain protein learn some tasks better but also forget faster, according to new research from MIT that may explain the phenomenon of autistic savants in humans. The work could also result in future treatments for autism and other brain development disorders.

Researchers at the Picower Institute for Learning and Memory at MIT report in the Feb. 13 issue of the Journal of Neuroscience that mice genetically engineered to lack a key protein used for building synapses-the junctions through which brain cells communicate-actually learned a spatial memory task faster and better than normal mice. But when tested weeks later, they couldn't remember what they had learned as well as normal mice, and they had trouble remembering contexts that should have provoked fear.

"These opposite effects on different types of learning are reminiscent of the mixed features of autistic patients, who may be disabled in some cognitive areas but show enhanced abilities in others," said Albert Y. Hung, a postdoctoral associate at the Picower Institute, staff neurologist at Massachusetts General Hospital and co-author of the study. "The superior learning ability of these mutant mice in a specific realm is reminiscent of human autistic savants."

Autism is one of a group of developmental disabilities known as autism spectrum disorders (ASDs), in which a person's ability to communicate and interact with others is impaired. The Centers for Disease Control and Prevention estimates that one in 150 American children has an ASD. Occasionally, an autistic person has an outstanding skill, such as an incredible rote memory or musical ability. Such individuals-like the character Dustin Hoffman played in the film Rain Man-may be referred to as autistic savants.

Hung said that while it seems counterintuitive that loss of an important synaptic scaffold protein would result in improved learning among the mice in this study, the absence of this protein may "trap" the mice's synapses in a more plastic state, which means the synapses are ready to respond to input but not maintain it in long-term memory.

Aberrant synapse development and faulty structure of dendritic spines-tiny protrusions on the surface of neurons that receive messages from other neurons-are often associated with neurodevelopmental disorders, including autism, in humans.

Hung; Morgan H. Sheng, MIT's Menicon Professor of Neuroscience; and colleagues investigated the role in brain development and cognitive function of a protein called Shank1. Shank1 is one member of a family of proteins that act as structural scaffolds linking together different components of the synapse. In humans, mutations in the closely related protein Shank3 have been linked to the autism spectrum of disorders characterized by impaired social interaction, absent or delayed language development and repetitive behaviors.

The mice in the study had smaller dendritic spines and weaker brain synapses. Their enhanced spatial learning is similar to that of mice engineered to have a mutation in another protein-neuroligin3-that binds directly to Shank1 and is also associated with autism. "We speculate that enhanced spatial learning might be a common feature of mouse models of autism, and that it might reflect a pathological elevation of brain plasticity in the human disease," Hung and Sheng wrote.

In addition to Hung and Sheng, a Howard Hughes Medical Institute (HHMI) investigator, MIT authors are Picower Institute research scientist Kensuke Futai; MIT biology graduate student Jubin Ryu; MIT biology undergraduate Mollie A. Woodworth, Picower Institute postdoctoral fellow Fleur L. Kidd; Picower Institute research assistant Clifford Sung; and Mark F. Bear, Picower Professor of Neuroscience, HHMI investigator and director of the Picower Institute. Additional authors are from the University of Milan, the University of North Carolina at Chapel Hill, and Fujita Health University in Japan.

This work was supported by the RIKEN-MIT Neuroscience Research Center, the National Institutes of Health and HHMI.

Written by Deborah Halber, Picower Institute for Learning and Memory at MIT

Elizabeth A. Thomson | MIT News Office
Further information:
http://web.mit.edu/newsoffice/www

Further reports about: Autism Brain Neuroscience Picower Synapse autistic disorders savants

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>