Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How red blood cells nuke their nuclei

12.02.2008
Unlike the rest of the cells in your body, your red blood cells lack nuclei. That quirk dates back to the time when mammals began to evolve.

Other vertebrates such as fish, reptiles, and birds, have red cells that contain nuclei that are inactive. Losing the nucleus enables the red blood cell to contain more oxygen-carrying hemoglobin, thus enabling more oxygen to be transported in the blood and boosting our metabolism.

Scientists have struggled to understand the mechanism by which maturing red blood cells eject their nuclei. Now, researchers in the lab of Whitehead Member Harvey Lodish have modeled the complete process in vitro in mice, reporting their findings in Nature Cell Biology online on February 10, 2008. The first mechanistic study of how a red blood cell loses its nucleus, the research sheds light on one of the most essential steps in mammalian evolution.

It was known that as a mammalian red blood cell nears maturity, a ring of actin filaments contracts and pinches off a segment of the cell that contains the nucleus, a type of “cell division.” The nucleus is then swallowed by macrophages (one of the immune system’s quick-response troops). The genes and signaling pathways that drive the pinching-off process, however, were a mystery.

... more about:
»Lodish »Nucleus »Rac »blood »nuclei

“Using a cell-culture system we were actually able to watch the cells divide, go through hemoglobin synthesis and then lose their nuclei,” says Lodish, who is also a professor of biology at Massachusetts Institute of Technology. “We discovered that the proteins Rac 1, Rac 2 and mDia2 are involved in building the ring of actin filaments.”

“We were very interested in that Rac 1 and Rac 2 were involved in disposing the nuclei of red blood cells,” says Peng Ji, lead author and postdoctoral researcher in the Lodish lab. “These proteins are known for their role in creating actin fibers in many body cells, and a necessary component of many important cellular functions including cell division that support cell growth.”

His cell-culture system began with red blood cell precursors drawn from an embryonic mouse liver (in mammalian embryos, the liver is the main producer of such cells, rather than bone marrow as in adults). The cultured cells, synchronized to develop together, divided four or five times before losing their nuclei and becoming immature red blood cells. The researchers used simple fluorescence-based assays that enabled them to probe the changes in the red blood cells through the different stages leading up to the loss of the nucleus.

The researchers plan to further investigate the entire process of red blood cell formation, which may lead to insights about genetic alterations that underlie certain red blood cell disorders.

“During normal cell division, each daughter cell receives half the DNA,” comments Lodish. “In this case, when the red blood cell divides, one daughter cell gets all the DNA. What’s fascinating is that in this case, that daughter cell gets eaten by macrophages. Until now, scientists were unable to study these cells because they were unable to see them.”

Cristin Carr | EurekAlert!
Further information:
http://www.wi.mit.edu

Further reports about: Lodish Nucleus Rac blood nuclei

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>