Tattooing improves response to DNA vaccine

Martin Müller and his team at the Deutsches Krebsforschungszentrum (German Cancer Research Center), Heidelberg, Germany, have shown that tattooing is a more effective way of delivering DNA vaccines than intramuscular injection.

Using a coat protein from the human papillomavirus (HPV, the cause of cervical cancer) as a model DNA vaccine antigen, they compared delivery by tattooing the skin of mice with standard intramuscular injection with, and without, the molecular adjuvants that are often given to boost immune response.

The tattoo method gave a stronger humoral (antibody) response and cellular response than intramuscular injection, even when adjuvants were included in the latter. Three doses of DNA vaccine given by tattooing produced at least 16 times higher antibody levels than three intramuscular injections with adjuvant. The adjuvants enhanced the effect of intramuscular injection, but not of tattooing.

Tattooing is an invasive procedure done with a solid vibrating needle, causing a wound and sufficient inflammation to ‘prime’ the immune system. It also covers a bigger area of the skin than an injection, so the DNA vaccine can enter more cells. These effects may account for the stronger immune response arising from introducing a DNA vaccine into the body by tattooing. Of course, the tattooing approach may not be to everyone’s taste – as it is likely to hurt – but the researchers believe that it could have a role in, for instance, routine vaccination of cattle or in delivering therapeutic (rather than prophylactic) vaccines to humans.

‘Vaccination with naked DNA has been hampered by its low efficiency’ says Müller. ‘Delivery of DNA via tattooing could be a way for a more widespread commercial application of DNA vaccines’

Media Contact

Charlotte Webber alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors