Why do earthquakes stop?

The underlying structure of a fault determines whether an earthquake rupture will jump from one fault to another, magnifying its size and potential devastation. Understanding why some earthquakes terminate along a fault, while others jump or step-over a gap to another fault, is essential to forecasting the seismic hazard of complex fault systems, such as the San Andreas Fault.

In a paper published in this issue of BSSA, author David Oglesby of University of California at Riverside suggests that the pattern of stress at the end of the primary fault can strongly affect an earthquake’s ability to jump to a secondary fault.

He suggests that a smooth, gradual decrease in stress along a rupture results in slower rupture deceleration, less strain, less generation of seismic waves, and lowers the likelihood that the earthquake will jump to another fault.

In contrast, a stress pattern that terminates suddenly leads to abrupt rupture termination, higher strain, more seismic radiation, and a higher likelihood of the rupture jumping to a secondary fault.

The results of this numerical study illustrate the importance of the slip gradient and the acceleration of the rupture front in determining the probability of a rupture jumping from one fault segment to another.

Media Contact

Nan Broadbent EurekAlert!

More Information:

http://www.seismosoc.org

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors