Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking down Huntington's disease one protein at a time

06.02.2008
Hoping to piece together the intricate series of interactions that lead to Huntington's disease, Indiana University Bloomington scientists have determined the shape and structure of a binding site that may prove useful in combating the neurodegenerative disease.

In the Feb. 1 issue of Journal of Molecular Biology, IU Bloomington biologists Joel Ybe and Qian Niu describe a region on the surface of HIP1 (Huntingtin-interacting protein 1) that could bind HIPPI (HIP1-protein interactor). The association of HIP1 and HIPPI is believed to lead to the degeneration of nerve cells.

"If we now think that this is the region where HIPPI binds, we could eventually design a drug that can come in and sit down between these two proteins, which would prevent the binding of HIPPI," said Ybe, who led the research.

Ybe and Niu's paper is the first to scrutinize a Huntington's disease-related protein's structure and function at the molecular level. Ybe and colleagues hope meticulous study of each Huntington's disease protein will suggest new avenues for wholesale prevention.

... more about:
»HIP1 »HIPPI »Huntington' »Ybe »bind »binding »clathrin »nutrients »structure

"The important thing for us is to come up with something that will potentially help people," said Ybe. "What is happening before the manifestation of the disease? Can we use this information to come up with drugs to diffuse that process?"

Huntington's disease is a hereditary disorder that causes large numbers of nerve cells to die. About 30,000 people in the U.S. are estimated to have the disease -- approximately one person in ten thousand. Symptoms include uncontrolled movements, dementia and depression, but these symptoms do not usually appear until the afflicted reach their 30s or 40s. Despite major strides forward in understanding the disease in recent years, there is currently no cure.

The disease begins when the huntingtin protein falls off HIP1. The vacancy allows another protein, HIPPI, to then bind to HIP1. The complex of HIP1 and HIPPI is responsible for activating other proteins that cause the death of cells. The loss of large amounts of nerve cells leads to a loss of motor function, and eventually brain function, too.

Ybe and Niu used X-ray crystallography to look at an area of interest on the surface of HIP1, which works in concert with clathrin to traffic nutrients into a cell, and has long been implicated as playing an important role in the development of Huntington's disease. They learned that the potential binding surface of HIPPI in HIP1 has an unexpected shape for a binding site, a spiraling spiral called a "coiled coil." This finding was contrary to predicted results that the binding surface that receives HIPPI is folded into a so-called death effector domain.

Using the information from the published molecular structure of HIP1, IU biologists hope to be able to test which protein connections are ultimately responsible for triggering the chain of interactions leading to Huntington's disease and how to block them. For example, they observed that clathrin, protein involved in bringing nutrients to the cell, binds with HIP1 right next door to where HIPPI binds. While clathrin "packages" nutrients for a cell, HIP1 connects these "baskets" to the structure of the cell. If HIPPI binding with HIP1 prevents clathrin connection with HIP1, then the normal pathway of nutrients into a cell is interrupted, causing changes in the cells ability to function normally.

"Until we understand the relationship between huntingtin protein, HIP1, clathrin and HIPPI -- we are not going to understand what is happening in the person who has the disease," says Ybe. "You understand what's going on in healthy cells, before you understand what's going on in diseased cells."

Joel Ybe | EurekAlert!
Further information:
http://www.indiana.edu

Further reports about: HIP1 HIPPI Huntington' Ybe bind binding clathrin nutrients structure

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>