Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking down Huntington's disease one protein at a time

06.02.2008
Hoping to piece together the intricate series of interactions that lead to Huntington's disease, Indiana University Bloomington scientists have determined the shape and structure of a binding site that may prove useful in combating the neurodegenerative disease.

In the Feb. 1 issue of Journal of Molecular Biology, IU Bloomington biologists Joel Ybe and Qian Niu describe a region on the surface of HIP1 (Huntingtin-interacting protein 1) that could bind HIPPI (HIP1-protein interactor). The association of HIP1 and HIPPI is believed to lead to the degeneration of nerve cells.

"If we now think that this is the region where HIPPI binds, we could eventually design a drug that can come in and sit down between these two proteins, which would prevent the binding of HIPPI," said Ybe, who led the research.

Ybe and Niu's paper is the first to scrutinize a Huntington's disease-related protein's structure and function at the molecular level. Ybe and colleagues hope meticulous study of each Huntington's disease protein will suggest new avenues for wholesale prevention.

... more about:
»HIP1 »HIPPI »Huntington' »Ybe »bind »binding »clathrin »nutrients »structure

"The important thing for us is to come up with something that will potentially help people," said Ybe. "What is happening before the manifestation of the disease? Can we use this information to come up with drugs to diffuse that process?"

Huntington's disease is a hereditary disorder that causes large numbers of nerve cells to die. About 30,000 people in the U.S. are estimated to have the disease -- approximately one person in ten thousand. Symptoms include uncontrolled movements, dementia and depression, but these symptoms do not usually appear until the afflicted reach their 30s or 40s. Despite major strides forward in understanding the disease in recent years, there is currently no cure.

The disease begins when the huntingtin protein falls off HIP1. The vacancy allows another protein, HIPPI, to then bind to HIP1. The complex of HIP1 and HIPPI is responsible for activating other proteins that cause the death of cells. The loss of large amounts of nerve cells leads to a loss of motor function, and eventually brain function, too.

Ybe and Niu used X-ray crystallography to look at an area of interest on the surface of HIP1, which works in concert with clathrin to traffic nutrients into a cell, and has long been implicated as playing an important role in the development of Huntington's disease. They learned that the potential binding surface of HIPPI in HIP1 has an unexpected shape for a binding site, a spiraling spiral called a "coiled coil." This finding was contrary to predicted results that the binding surface that receives HIPPI is folded into a so-called death effector domain.

Using the information from the published molecular structure of HIP1, IU biologists hope to be able to test which protein connections are ultimately responsible for triggering the chain of interactions leading to Huntington's disease and how to block them. For example, they observed that clathrin, protein involved in bringing nutrients to the cell, binds with HIP1 right next door to where HIPPI binds. While clathrin "packages" nutrients for a cell, HIP1 connects these "baskets" to the structure of the cell. If HIPPI binding with HIP1 prevents clathrin connection with HIP1, then the normal pathway of nutrients into a cell is interrupted, causing changes in the cells ability to function normally.

"Until we understand the relationship between huntingtin protein, HIP1, clathrin and HIPPI -- we are not going to understand what is happening in the person who has the disease," says Ybe. "You understand what's going on in healthy cells, before you understand what's going on in diseased cells."

Joel Ybe | EurekAlert!
Further information:
http://www.indiana.edu

Further reports about: HIP1 HIPPI Huntington' Ybe bind binding clathrin nutrients structure

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>