Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein Folding Modifies the Water in the Environment: RUB Chemistry Observes “THz Dance“ Changes

Just a few weeks ago, teams from Bochum, Illinois, and Nevada were able to prove with terahertz (THz) spectroscopy that proteins do modify water molecules in their environment to a long range extent:

The water molecules, which generally move around like disco dancers in their collective network motions behave more like in a neat minuet under protein influence. The group by Prof. Dr. Martina Havenith-Newen (Physical Chemistry II Dpt., RUB) managed to find out more about the rules of this dance. They could show that protein folding changes the dancing steps of the water.

A partly unfolded protein will affect water molecules within the dynamical hydration shell to a much less extent than a folded one does. The higher the flexibility of the protein, the less affected is the water. The scientists present their conclusions as a “communication“ in the Journal of the American Chemical Society.

Protein Creates Order in Water

... more about:
»Havenith-Newen »RUB »THz »water molecules

In water, weak bonds between two adjacent water molecules, referred to as the hydrogen bridge bonds, are continuously opening and closing: this happens on average every 1.3 pico seconds (one pico second = 10 power -12 seconds). “Even small concentrations of proteins in water lead to measurable changes in collective movements“, Prof. Havenith-Newen explains the results of previous studies with THz spectroscopy.

The Folding is the Important Thing

While the folded protein affects up to 1,000 water molecules in its environment, this is only true for the partly unfolded protein to a small extent. If one modifies some parts of the protein through mutation, the effect is less remarkable. These observations were now made by the scientific teams of Prof. Havenith-Newen, Prof. Dr. Martin Gruebele, and Prof. Dr. David M. Leitner from RUB, the University of Illinois and the University of Nevada, respectively. “This shows that water in the environment of folded proteins is different from that in the environment of an unfolded protein“, Prof. Havenith-Newen concludes. ”This will further support the hypothesis that protein and water are not independent of each other and do influence each other – an effect which has been considered decisive for protein folding, and which may be highly important for protein functions.“

New, Highly Precise Method of Proof

THz spectroscopy is a new, especially sensitive method of observing fast water network movement in the close vicinity of proteins with the THz frequencies ranging between microwave and infrared frequencies. Particularly strong THz laser radiation sources lasers, which has been used in chemistry for the first time by RUB, facilitates the observation of proteins in their natural environment during their fast dance with water molecules. The studies which have been published in the Journal of the American Chemical Society were financed by the Human Frontier Science Programme. Martin Gruebele has stayed at the RUB Chemistry Department after being awarded the Friedrich Wilhelm Bessel prize of the Alexander von Humboldt foundation.

Prof. Dr. Martina Havenith-Newen | alfa
Further information:

Further reports about: Havenith-Newen RUB THz water molecules

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>