Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

THESIS: Nitrogen fixation process in plants to combat drought in various species of legumes

24.01.2008
The regulation of the biological fixation of nitrogen in hydric stress conditions varies with the different species of legume plants studied.

This was the conclusion of Ruben Ladrera Fernández in his PhD thesis, “Models of regulation of nitrogen fixation in response to drought: Soya and Medicago”, in which the different ways of distinct species of legumes respond to drought conditions are explained. The PhD work was directed by Professor César Arrese-Igor Sánchez and senior lecturer Ms Esther González García from the Department of Environmental Sciences at the Public University of Navarre

Biological fixation of nitrogen

In his thesis Mr Ladrera explains that nitrogen is the most abundant element in the terrestrial atmosphere but that it is a very poor source of nutrition for plants. This apparent paradox is due to the fact that atmospheric nitrogen is inert and cannot be used by living things and thus has to be reduced to other chemical forms such as nitrate (NO3-) or ammonium (NH4+) in order to be used by plants. This situation causes a disproportionate amount of nitrogenous fertilisers to be used for agriculture, giving rise to various environmental problems such as contamination of soil and water or the emission of oxides of nitrogen into the atmosphere.

... more about:
»BfN »Carbon »Ladrera »Soya »fixation »hydric »legume »nitrogen »nodule »various

However, some organisms are able to reduce atmospheric nitrogen to ammonium for its subsequent metabolic use, which is known as the biological fixation of nitrogen (BFN). These nitrogen-fixing organisms (also called diazotrophs), can fix nitrogen either as free living or in symbiosis with plants. Amongst the various nitrogen-fixing symbiotic associations, the agriculturally most important is that carried out by plants belonging to the legume and bacteria families, generically known as rhizobes.

In this symbiosis — according to the research undertaken by Mr Ladrera — bacteria dwelling in specialised organs of plant roots known as nodules are capable of using atmospheric nitrogen and reducing it to ammonium, which is exported to the plant, this providing the carbon from photosynthesis to the bacteria and which is necessary to carry out bacteroidal respiration.

What happens in drought or hydric stress

Rubén Ladrera states in his thesis that BFN is a process highly sensitive to drought, to such an extent that it is rapidly inhibited in hydric stress conditions and thus causes significant losses of leguminous crops at a worldwide level. However, it is still not known what the exact mechanism responsible for this inhibition is. Various mechanisms have been put forward, amongst which is a limiting of oxygen in the nodules, a process of retroinhibition using nitrogen and a limiting of the carbon flow to the bacteria.

In this context, the effect of drought on the nodular metabolism and on the plant in different species of legumes (Soya, alfalfa and Medicago truncatula) was studied. To this end, Mr Ladrera used plants from different varieties of each species and that demonstrated different tolerances to hydric stress, with the aim of identifying factors involved in the regulation of BFN.

The results of the research show a limiting of the carbon flow to the bacteria is produced as well as an accumulation of nitrogenated compounds in the nodule (but not in the leaves) of the Soya plants subject to drought, at the same time as the inhibition of the BFN. These results show that the regulation of the BFN in Soya, in hydric stress conditions, is produced at a localised level, in the nodule itself, and that the metabolism of carbon and nitrogen is involved in this.

Nevertheless, in the case of other species analysed - alfalfa and Medicago truncatula -, drought caused an accumulation of carbonated compounds in the nodules, which indicates the regulation of BFN in these species is produced independently of nodular carbon metabolism.

These differences — concludes the author of the PhD thesis – appear to be due to the greater tolerance shown by the species of the Medicago genus to drought conditions.

Garazi Andonegi | EurekAlert!
Further information:
http://www.elhuyar.com

Further reports about: BfN Carbon Ladrera Soya fixation hydric legume nitrogen nodule various

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>