Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research at the University of Navarra discovers new compounds active against tuberculosis and malaria

24.01.2008
University of Navarra PhD in chemistry researcher, Esther Vicente, has discovered new compounds active for treating tuberculosis and malaria.

Her thesis, defended at the Faculty of Sciences in her home city of Pamplona, the capital of Navarre, describes the synthesis and characterisation of 65 derivatives of quinoxaline, the structure of which is similar to a number of antimalalarial and antituberculosis pharmaceutical drugs currently on the market. Of the molecules prepared, four stand out for their antimalalarial activity and 15 for their antituberculosis activity.

Ms Vicente’s work is within the framework of the line of research of the Medicines R+D Unit at this university, which studies new pharmaceutical drugs to combat forgotten diseases. It involves infectious pathologies that mainly affect developing countries and cause 35,000 deaths daily. Amongst these ailments are tuberculosis and malaria, being the infectious diseases in the world that kill most people – 3 million every year.

The synthesis and characterisation of the new compounds was undertaken at the Centro de Investigación de Farmacobiología Aplicada (CIFA) of the University of Navarra. Esther Vicente did research for five months at the London School of Hygiene and Tropical Medicine in the UK, where she drew up the evaluation of the antimalarial activity of her products. The antituberculosis work was carried out at the Southern Research Institute of Birmingham, within the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF) that is subsidised by the National Institute of Allergy and Infectious Diseases in Bethesda (USA).

Studies continuing in London and the USA
Amongst the conclusions of this European PhD, the author emphasises the discovery of new molecules that are more active in vitro than chloroquine, the reference pharmaceutical drug for the treatment of malaria the causing parasite of which has developed resistances. Amongst these molecules four stand out – the most selective – and these continue to be studied in vivo at the London School of Hygiene and Tropical Medicine.

Also, the important in vitro antituberculosis work, under cytotoxicity and good selectivity of fifteen of these molecules, make them new leader compounds in the TAACF programme; thus, in-depth studies are being carried out on them at the University of Illinois and at the Colorado State University, both in the USA.

In her thesis Esther Vicente also describes a Computational Chemistry study which she drew up at the Instituto de Investigación en Fisicoquímica Teórica y Aplicada (INIFTA) in La Plata, Argentina. Here, using various computer programmes, she designed a theoretical model to estimate if a compound could be potentially active, a tool that could prove to be highly useful in the design of new structures active against forgotten diseases.

Irati Kortabitarte | EurekAlert!
Further information:
http://www.elhuyar.com

Further reports about: Malaria Navarra Tuberculosis antituberculosis compound

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>