Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research at the University of Navarra discovers new compounds active against tuberculosis and malaria

24.01.2008
University of Navarra PhD in chemistry researcher, Esther Vicente, has discovered new compounds active for treating tuberculosis and malaria.

Her thesis, defended at the Faculty of Sciences in her home city of Pamplona, the capital of Navarre, describes the synthesis and characterisation of 65 derivatives of quinoxaline, the structure of which is similar to a number of antimalalarial and antituberculosis pharmaceutical drugs currently on the market. Of the molecules prepared, four stand out for their antimalalarial activity and 15 for their antituberculosis activity.

Ms Vicente’s work is within the framework of the line of research of the Medicines R+D Unit at this university, which studies new pharmaceutical drugs to combat forgotten diseases. It involves infectious pathologies that mainly affect developing countries and cause 35,000 deaths daily. Amongst these ailments are tuberculosis and malaria, being the infectious diseases in the world that kill most people – 3 million every year.

The synthesis and characterisation of the new compounds was undertaken at the Centro de Investigación de Farmacobiología Aplicada (CIFA) of the University of Navarra. Esther Vicente did research for five months at the London School of Hygiene and Tropical Medicine in the UK, where she drew up the evaluation of the antimalarial activity of her products. The antituberculosis work was carried out at the Southern Research Institute of Birmingham, within the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF) that is subsidised by the National Institute of Allergy and Infectious Diseases in Bethesda (USA).

Studies continuing in London and the USA
Amongst the conclusions of this European PhD, the author emphasises the discovery of new molecules that are more active in vitro than chloroquine, the reference pharmaceutical drug for the treatment of malaria the causing parasite of which has developed resistances. Amongst these molecules four stand out – the most selective – and these continue to be studied in vivo at the London School of Hygiene and Tropical Medicine.

Also, the important in vitro antituberculosis work, under cytotoxicity and good selectivity of fifteen of these molecules, make them new leader compounds in the TAACF programme; thus, in-depth studies are being carried out on them at the University of Illinois and at the Colorado State University, both in the USA.

In her thesis Esther Vicente also describes a Computational Chemistry study which she drew up at the Instituto de Investigación en Fisicoquímica Teórica y Aplicada (INIFTA) in La Plata, Argentina. Here, using various computer programmes, she designed a theoretical model to estimate if a compound could be potentially active, a tool that could prove to be highly useful in the design of new structures active against forgotten diseases.

Irati Kortabitarte | EurekAlert!
Further information:
http://www.elhuyar.com

Further reports about: Malaria Navarra Tuberculosis antituberculosis compound

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>