Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research at the University of Navarra discovers new compounds active against tuberculosis and malaria

24.01.2008
University of Navarra PhD in chemistry researcher, Esther Vicente, has discovered new compounds active for treating tuberculosis and malaria.

Her thesis, defended at the Faculty of Sciences in her home city of Pamplona, the capital of Navarre, describes the synthesis and characterisation of 65 derivatives of quinoxaline, the structure of which is similar to a number of antimalalarial and antituberculosis pharmaceutical drugs currently on the market. Of the molecules prepared, four stand out for their antimalalarial activity and 15 for their antituberculosis activity.

Ms Vicente’s work is within the framework of the line of research of the Medicines R+D Unit at this university, which studies new pharmaceutical drugs to combat forgotten diseases. It involves infectious pathologies that mainly affect developing countries and cause 35,000 deaths daily. Amongst these ailments are tuberculosis and malaria, being the infectious diseases in the world that kill most people – 3 million every year.

The synthesis and characterisation of the new compounds was undertaken at the Centro de Investigación de Farmacobiología Aplicada (CIFA) of the University of Navarra. Esther Vicente did research for five months at the London School of Hygiene and Tropical Medicine in the UK, where she drew up the evaluation of the antimalarial activity of her products. The antituberculosis work was carried out at the Southern Research Institute of Birmingham, within the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF) that is subsidised by the National Institute of Allergy and Infectious Diseases in Bethesda (USA).

Studies continuing in London and the USA
Amongst the conclusions of this European PhD, the author emphasises the discovery of new molecules that are more active in vitro than chloroquine, the reference pharmaceutical drug for the treatment of malaria the causing parasite of which has developed resistances. Amongst these molecules four stand out – the most selective – and these continue to be studied in vivo at the London School of Hygiene and Tropical Medicine.

Also, the important in vitro antituberculosis work, under cytotoxicity and good selectivity of fifteen of these molecules, make them new leader compounds in the TAACF programme; thus, in-depth studies are being carried out on them at the University of Illinois and at the Colorado State University, both in the USA.

In her thesis Esther Vicente also describes a Computational Chemistry study which she drew up at the Instituto de Investigación en Fisicoquímica Teórica y Aplicada (INIFTA) in La Plata, Argentina. Here, using various computer programmes, she designed a theoretical model to estimate if a compound could be potentially active, a tool that could prove to be highly useful in the design of new structures active against forgotten diseases.

Irati Kortabitarte | EurekAlert!
Further information:
http://www.elhuyar.com

Further reports about: Malaria Navarra Tuberculosis antituberculosis compound

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>