Drawing on the expertise of multi-disciplinary research teams, the map developed by the 1000 Genomes Project will provide a view of biomedically relevant DNA variations at a resolution unmatched by current resources. The European Bioinformatics Institute (EBI), working with long-term collaborator the US National Institute of Biotechnology Information (NCBI), will make the data swiftly available to the worldwide scientific community through freely available public databases.
The EBI and NCBI will collect and analyse sequence generated by the Wellcome Trust Sanger Institute, the Beijing Genomics Institute, Shenzhen, China, and the USA’s National Human Genome Research Institute Large-Scale Sequencing Network.
During its two-year production phase, the 1000 Genomes Project will deliver sequence at an average rate of about 8.2 billion bases per day, the equivalent of more than two human genomes every 24 hours. The volume of data – and the interpretation of those data – will pose a major challenge for leading experts in the fields of bioinformatics and statistical genetics.
It’s a challenge that Paul Flicek, lead investigator on the EBI’s part of the project, is eager to rise to. ‘The 1000 Genomes Project represents an important step in relating DNA sequence information to each individual’s risk of disease and response to drugs – we’re on the cusp of building an important bridge between biology and medicine,’ he says.
Contact:Anna-Lynn Wegener, EMBL Press Officer, Heidelberg, Germany, Tel: +49 6221 387 452, www.embl.org, wegener@embl.de
Anna-Lynn Wegener | EMBL
Further information:
http://www.ebi.ac.uk
http://www.embl.org/aboutus/news/press/2007/22jan08/
Further reports about: > CONSORTIUM > Genom > sequence
Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg
Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology
At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.
Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...
Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.
Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Getting electrons to move in a semiconductor
25.04.2018 | Physics and Astronomy
Reconstructing what makes us tick
25.04.2018 | Physics and Astronomy
Cheap 3-D printer can produce self-folding materials
25.04.2018 | Information Technology