Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics behind the disease SLE almost completed

22.01.2008
A new study has mapped the risk factors behind the autoimmune disease SLE in the entire human genome. The findings of the study, in which researchers from Uppsala University took part, are being presented today in the Web edition of The New England Review of Medicine.

The study charts which of the human being’s some 20,000 are the strongest risk factors for SLE (systemic lupus erythematosus). The analysis was performed with half a million genetic markers, so-called SNP markers, that are evenly distributed across the whole genome.

Two research teams from Uppsala University, Ann-Christine Syvänen’s and Lars Rönnblom’s groups at the Department of Medical Sciences, were part of the group behind the study, which was led by scientists from the U.S. The study included 800 Swedish SLE patients from rheumatology clinics at Akademiska Hospital in Uppsala, Karolinska Hospital in Stockholm, and the university hospitals in Umeå and Lund.

“The study is especially interesting since SLE is seen as a model disease for autoimmune disorders, where the body’s immune defense attacks the patient’s own tissue,” says Lars Rönnblom, professor of rheumatology.

... more about:
»Ann-Christine »Genetic »Genome »SLE »risk factor

In SLE most body organs can be damaged by the autoimmune process. From studies of twins we know that SLE has strong genetic connections where the interaction with environmental factors can lead to the genesis of the disease. With the findings of this new study, researchers can now move on to functional and clinical analyses. Functional analyses can figure out the molecular mechanisms in SLE, which ultimately can lead to better drugs for the disease.

“Since SLE is characterized by many different pathological symptoms, these genetic findings can also lead to genetic tests in the future to make it possible to classify the disease in each individual more exactly, thereby providing support for treatment decisions,” says Ann-Christine Syvänen, professor of molecular medicine.

The new study identifies two previously unknown genes, BLK and ITGAM, with functions in the immune system’s cells, as risk factors for SLE. Moreover, the study identifies two previously known genes from the interferon system, IRF5 and STAT4, and the well-known HLA system as the three strongest risk factors for SLE. These same Uppsala scientists originally identified the IRF5 gene as a risk factor, in 2005.

The genetic analyses of the Swedish patients were done at the SNP genotyping laboratory at Akademiska University Hospital in Uppsala. It became possible only in 2007 to perform genetic analyses on a scale comprising the entire genome, thanks to extremely rapid technological development.

“The advantage of genetic studies across the entire genome is that they unconditionally lead to the identification of all the genes that contribute to the genetic risk for SLE,” says Ann-Christine Syvänen.

Read the article: http://content.nejm.org/cgi/content/abstract/NEJMoa0707865?resourcetype=HWCIT

One more study on SLE was published today, also including Uppsala researchers: http://info.uu.se/press.nsf/pm/several.genes.id3BB.html

For more information, please contact Ann-Christine Syvänen, phone: +46 (0)18-611 29 59, Ann-Christine.Syvanen@medsci.uu.se, or Lars Rönnblom, +46 (0)18- 611 53 98, Lars.Rönnblom@medsci.uu.se

Anneli Waara | alfa
Further information:
http://www.uu.se
http://content.nejm.org/cgi/content/abstract/NEJMoa0707865?resourcetype=HWCIT

Further reports about: Ann-Christine Genetic Genome SLE risk factor

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>