Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics behind the disease SLE almost completed

22.01.2008
A new study has mapped the risk factors behind the autoimmune disease SLE in the entire human genome. The findings of the study, in which researchers from Uppsala University took part, are being presented today in the Web edition of The New England Review of Medicine.

The study charts which of the human being’s some 20,000 are the strongest risk factors for SLE (systemic lupus erythematosus). The analysis was performed with half a million genetic markers, so-called SNP markers, that are evenly distributed across the whole genome.

Two research teams from Uppsala University, Ann-Christine Syvänen’s and Lars Rönnblom’s groups at the Department of Medical Sciences, were part of the group behind the study, which was led by scientists from the U.S. The study included 800 Swedish SLE patients from rheumatology clinics at Akademiska Hospital in Uppsala, Karolinska Hospital in Stockholm, and the university hospitals in Umeå and Lund.

“The study is especially interesting since SLE is seen as a model disease for autoimmune disorders, where the body’s immune defense attacks the patient’s own tissue,” says Lars Rönnblom, professor of rheumatology.

... more about:
»Ann-Christine »Genetic »Genome »SLE »risk factor

In SLE most body organs can be damaged by the autoimmune process. From studies of twins we know that SLE has strong genetic connections where the interaction with environmental factors can lead to the genesis of the disease. With the findings of this new study, researchers can now move on to functional and clinical analyses. Functional analyses can figure out the molecular mechanisms in SLE, which ultimately can lead to better drugs for the disease.

“Since SLE is characterized by many different pathological symptoms, these genetic findings can also lead to genetic tests in the future to make it possible to classify the disease in each individual more exactly, thereby providing support for treatment decisions,” says Ann-Christine Syvänen, professor of molecular medicine.

The new study identifies two previously unknown genes, BLK and ITGAM, with functions in the immune system’s cells, as risk factors for SLE. Moreover, the study identifies two previously known genes from the interferon system, IRF5 and STAT4, and the well-known HLA system as the three strongest risk factors for SLE. These same Uppsala scientists originally identified the IRF5 gene as a risk factor, in 2005.

The genetic analyses of the Swedish patients were done at the SNP genotyping laboratory at Akademiska University Hospital in Uppsala. It became possible only in 2007 to perform genetic analyses on a scale comprising the entire genome, thanks to extremely rapid technological development.

“The advantage of genetic studies across the entire genome is that they unconditionally lead to the identification of all the genes that contribute to the genetic risk for SLE,” says Ann-Christine Syvänen.

Read the article: http://content.nejm.org/cgi/content/abstract/NEJMoa0707865?resourcetype=HWCIT

One more study on SLE was published today, also including Uppsala researchers: http://info.uu.se/press.nsf/pm/several.genes.id3BB.html

For more information, please contact Ann-Christine Syvänen, phone: +46 (0)18-611 29 59, Ann-Christine.Syvanen@medsci.uu.se, or Lars Rönnblom, +46 (0)18- 611 53 98, Lars.Rönnblom@medsci.uu.se

Anneli Waara | alfa
Further information:
http://www.uu.se
http://content.nejm.org/cgi/content/abstract/NEJMoa0707865?resourcetype=HWCIT

Further reports about: Ann-Christine Genetic Genome SLE risk factor

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>