Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics behind the disease SLE almost completed

22.01.2008
A new study has mapped the risk factors behind the autoimmune disease SLE in the entire human genome. The findings of the study, in which researchers from Uppsala University took part, are being presented today in the Web edition of The New England Review of Medicine.

The study charts which of the human being’s some 20,000 are the strongest risk factors for SLE (systemic lupus erythematosus). The analysis was performed with half a million genetic markers, so-called SNP markers, that are evenly distributed across the whole genome.

Two research teams from Uppsala University, Ann-Christine Syvänen’s and Lars Rönnblom’s groups at the Department of Medical Sciences, were part of the group behind the study, which was led by scientists from the U.S. The study included 800 Swedish SLE patients from rheumatology clinics at Akademiska Hospital in Uppsala, Karolinska Hospital in Stockholm, and the university hospitals in Umeå and Lund.

“The study is especially interesting since SLE is seen as a model disease for autoimmune disorders, where the body’s immune defense attacks the patient’s own tissue,” says Lars Rönnblom, professor of rheumatology.

... more about:
»Ann-Christine »Genetic »Genome »SLE »risk factor

In SLE most body organs can be damaged by the autoimmune process. From studies of twins we know that SLE has strong genetic connections where the interaction with environmental factors can lead to the genesis of the disease. With the findings of this new study, researchers can now move on to functional and clinical analyses. Functional analyses can figure out the molecular mechanisms in SLE, which ultimately can lead to better drugs for the disease.

“Since SLE is characterized by many different pathological symptoms, these genetic findings can also lead to genetic tests in the future to make it possible to classify the disease in each individual more exactly, thereby providing support for treatment decisions,” says Ann-Christine Syvänen, professor of molecular medicine.

The new study identifies two previously unknown genes, BLK and ITGAM, with functions in the immune system’s cells, as risk factors for SLE. Moreover, the study identifies two previously known genes from the interferon system, IRF5 and STAT4, and the well-known HLA system as the three strongest risk factors for SLE. These same Uppsala scientists originally identified the IRF5 gene as a risk factor, in 2005.

The genetic analyses of the Swedish patients were done at the SNP genotyping laboratory at Akademiska University Hospital in Uppsala. It became possible only in 2007 to perform genetic analyses on a scale comprising the entire genome, thanks to extremely rapid technological development.

“The advantage of genetic studies across the entire genome is that they unconditionally lead to the identification of all the genes that contribute to the genetic risk for SLE,” says Ann-Christine Syvänen.

Read the article: http://content.nejm.org/cgi/content/abstract/NEJMoa0707865?resourcetype=HWCIT

One more study on SLE was published today, also including Uppsala researchers: http://info.uu.se/press.nsf/pm/several.genes.id3BB.html

For more information, please contact Ann-Christine Syvänen, phone: +46 (0)18-611 29 59, Ann-Christine.Syvanen@medsci.uu.se, or Lars Rönnblom, +46 (0)18- 611 53 98, Lars.Rönnblom@medsci.uu.se

Anneli Waara | alfa
Further information:
http://www.uu.se
http://content.nejm.org/cgi/content/abstract/NEJMoa0707865?resourcetype=HWCIT

Further reports about: Ann-Christine Genetic Genome SLE risk factor

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>