Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predators do more than kill prey

21.01.2008
UC Riverside study shows significant evolutionary changes follow predators’ indirect effects on ecosystems

The direct effect predators have on their prey is to kill them. The evolutionary changes that can result from this direct effect include prey that are younger at maturity and that produce more offspring.

But killing prey also has indirect effects – rarely characterized or measured – such as a decline in the number of surviving prey, resulting, in turn, in more food available to survivors.

In a new study characterizing the complex ecological interactions that shape how organisms evolve, UC Riverside biologists Matthew Walsh and David Reznick present a novel way of quantifying these indirect effects by showing that prey adapt to food availability as well as the presence of predators.

“Our study can serve as a model for how humans alter ecosystems when they remove key predators like wolves and bears from land or tuna and billfish from seas,” said Reznick, a professor of biology.

He and Walsh compared life history traits between Trinidadian fish communities impacted by the presence of predators. They settled on Trinidadian waterfalls as study sites because the waterfalls serve as barriers to the upstream distribution of predator and prey fish, thereby creating distinct ecological communities in similar habitats only a few hundred meters from each other – like test-tubes in nature.

First, they used killifish from “killifish-only” localities, above waterfalls, where killifish are the only fish present; and killifish from “high predation” localities, below these waterfalls, where the killifish coexist with a diversity of predators. Second, they reared the grandchildren of these killifish in a lab at UCR to ensure that any differences observed between populations are likely to be genetic, and not environmental, in origin.

To quantify the direct and indirect effects of predation, Walsh and Reznick reared the killifish under multiple food levels that closely approximated the natural differences in food availability that the killifish experienced in Trinidad.

Their results demonstrate how predators’ direct and indirect effects shaped the way killifish evolved:

Killifish from high predation environments are younger at maturity and produce more offspring – the predicted direct evolutionary response to high mortality rates.

More food caused all fish to grow faster, then mature at a larger body size and earlier age, plus produce more babies.

Killifish from high predation environments gained more from high rations – an indirect evolutionary response to high mortality rates. Their increase in size at maturity, decrease in age at maturity and increase in the number of babies produced were all more pronounced than those seen in killifish from the killifish-only environment – differences that show that the high predation killifish were better adapted to convert high food rations into the production of more babies.

Study results appear in the Jan. 15 issue of the Proceedings of the National Academy of Sciences.

“Research has generally focused on the evolutionary implications of the direct effects of interactions between predator and prey,” said Walsh, a graduate student working in Reznick’s lab in the Department of Biology and the first author of the research paper. “But we found that the indirect effects of these interactions can be as important. Clearly, organisms become adapted to a given food level and evolve to best exploit their resources.”

The researchers argue that in addition to killing prey, the indirect evolutionary and ecological effects of predators cause a restructuring of the community, which in turn contributes to shaping how killifish evolve.

“Removing predators will not only alter the structure of the ecosystem, but will also cause a wider diversity of evolutionary changes in prey than had been considered,” said Reznick, the paper’s only coauthor. “Conversely, it means that the reintroduction of predators, which is an ongoing practice, such as in the reintroduction of wolves in the United States, demands more caution than is currently practiced since the prey will have adapted to a new environment in the time that predators were absent and will be ill prepared in more ways than had been imagined for the reintroduction of predators.

“Likewise, the crash that we have seen in the populations of many commercially exploited species of fish, and their failure to recover when fishing pressure is reduced, has been attributed to such indirect restructuring of the ecosystem.

“Since predator-induced indirect increases in resource availability are common in both terrestrial and aquatic ecosystems, the evolutionary consequences of these interactions are potentially a very important component of evolutionary change in nature,” Reznick added. “Moreover, biologists have observed evolutionary change occurring on short ecological timescales in nature, on the order of a few years to decades, suggesting that such interactions are contributing to overall ecosystem functioning and health.”

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

Further reports about: Evolutionary Maturity Reznick ecological ecosystem interactions

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>