Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered virus linked to deadly skin cancer

21.01.2008
Novel sequencing technique used at the University of Pittsburgh Cancer Institute reveals new cancer virus; reported in the journal Science

A new strategy to hunt for human viruses described in this week’s issue of the journal Science by the husband-and-wife team who found the cause of Kaposi’s sarcoma has revealed a previously unknown virus strongly associated with another rare but deadly skin cancer called Merkel cell carcinoma.

In the paper, University of Pittsburgh Cancer Institute (UPCI) researchers, Huichen Feng, Ph.D., Masahiro Shuda, Ph.D., Yuan Chang, M.D., and Patrick Moore, M.D., M.P.H., explain a nearly decade-long effort to harness the sequencing technology to identify the virus, which they call Merkel cell polyomavirus (MCV). While the research team emphasizes that their work does not prove MCV to be the cause of Merkel cell carcinoma, if the findings are confirmed, they may lead to new cancer treatment and prevention options.

“This is the first polyomavirus to be strongly associated with a particular type of human tumor,” said Dr. Moore, professor of microbiology and molecular genetics at the University of Pittsburgh School of Medicine and leader of the molecular virology program at UPCI. “Although polyomaviruses have been studied in relation to cancer development for years, the weight of scientific evidence had been leaning toward the view that these viruses do not cause human cancers.”

... more about:
»Chang »HPV »KSHV »Kaposi’s »MCC »MCV »polyomavirus

Polyomaviruses are a group of viruses that have been shown to cause cancers in animals for more than 50 years. But Dr. Moore noted that additional research is needed to determine what role, if any, MCV plays in human cancer development.

A rare but extremely aggressive cancer that spreads rapidly into other tissues and organs, Merkel cell carcinoma (MCC) develops from specialized nerve cells that respond to touch or pressure. The incidence of MCC has tripled over the past 20 years to about 1,500 cases a year, especially among people whose immune systems are compromised by AIDS or transplant-related immunosuppressant drugs. About half of patients with advanced MCC live nine months or less, and some two-thirds of MCC patients die within five years.

“If these findings are confirmed, we can look at how this new virus contributes to a very bad cancer with high mortality, and, just as importantly, use it as a model to understand how cancers occur and the cell pathways that are targeted,” added Dr. Moore. “Information that we gain could possibly lead to a blood test or vaccine that improves disease management and aids in prevention.”

For example, vaccines are now available against human papillomavirus (HPV) to prevent cervical cancer, noted Dr. Chang, professor of pathology. “MCV is another model that may increase our understanding of how cancers arise, with possibly important implications for non-viral cancers like prostate or breast cancer.”

MCV has additional similarities to HPV since both viruses integrate into the tumor cell genome but not the genome of healthy cells. This integration destroys the virus’s ability to replicate normally and may be the first critical step in MCC development.

The Pittsburgh team analyzed nearly 400,000 messenger RNA genetic sequences from four samples of MCC tumor tissue using a technique refined in their lab called digital transcriptome subtraction (DTS). Comparing the sequences expressed by the tumor genome to gene sequences mapped by the Human Genome Project, the researchers systematically subtracted known human sequences, leaving a group of genetic transcripts that might be from a foreign organism.

One sequence was similar to but distinct from all known viruses. The team went on to show that this sequence belonged to a new polyomavirus present in eight of 10 (80 percent) Merkel cell tumors they tested but only five of 59 (8 percent) control tissues from various body sites and four of 25 (16 percent) control skin tissues.

Although MCV is most commonly found in Merkel cell tumors, it also can be found in healthy people. The most important distinguishing feature is that MCV integrates into tumor cells in what is known as a monoclonal pattern, indicating that it infects the cell before the cell becomes cancerous. Tests on six of the eight MCV-positive tumors confirmed that viral DNA was integrated within the tumor genome in this monoclonal pattern, suggesting that infection with MCV could be a trigger for tumor formation. The Pittsburgh team subsequently has confirmed these results with additional tumor specimens.

Clues from elsewhere in the biomedical literature point to the existence of MCV, which has a genetic structure that is closely related to an African green monkey virus found in Germany in the 1970s. Researchers have found antibody evidence from blood tests that indicates some 15 percent to 25 percent of adults are infected with the still undiscovered human relative of this monkey virus. If MCV turns out to be this long-sought infection, then more than 1 billion people worldwide could already be infected.

“But again, look to the example of HPV,” said Dr. Moore. “Although up to 50 percent of sexually active young women are infected with HPV, a small proportion may actually get cervical cancer.”

Even if MCV is proven to play a role in MCC, Dr. Chang also cautioned that the virus is likely to be just a part of a much larger picture.

“Now we need to find out how it works,” she said. “Once the virus integrates, it could express an oncoprotein, or it could knock out a gene that suppresses tumor growth. Either way, the results are bound to be interesting.”

This is the second tumor-associated virus discovered by Drs. Moore and Chang, a husband-and-wife research team who also discovered Kaposi’s sarcoma-associated herpesvirus (KSHV) in 1993. KSHV, which causes Kaposi’s sarcoma, is the most common malignancy in AIDS patients and the most common cancer in Africa. To find KSHV, Drs. Moore and Chang used a different method to physically subtract human genetic sequences from Kaposi’s sarcoma tumors, leaving fragments of viral DNA.

Viruses, and some bacteria and parasites, are estimated to cause at least 20 percent of cancers worldwide. Over the past 40 years, few cancer-causing viruses have been confirmed in humans, including KSHV. Most of these viruses express cancer-causing proteins, called oncoproteins, in infected cells. Polyomaviruses, including MCV, possess an oncoprotein that has been shown to cause cancer after infection in animals. If MCV is confirmed to play a role in human cancer, it will be the eighth human tumor virus discovered.

Michele Baum | EurekAlert!
Further information:
http://www.upmc.edu

Further reports about: Chang HPV KSHV Kaposi’s MCC MCV polyomavirus

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>