Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic evolution of tumours according to their growth dynamics

11.01.2008
A study co directed by the Universidad Complutense de Madrid and La Paz hospital in Madrid identifies a protein of high expression in cells located at the tumour boundary that could play an essential role in the evolution of tumours and their invasive potential.

It is well accepted that tumour growth is a very complex process with many intervening factors, and in spite of being the subject of most investigations on a global scale; there are still many aspects that remain unknown, one of the most interesting of which is the relation between the dynamics of solid tumour growth and their gene expression.

The universal dynamics of tumour growth (Brú A, Albertos S, Luis Subiza J, García-Asenjo JL, Brú I. Biophys J. 2003) established that the growth dynamics of all tumours is similar. Such growth dynamics implied that the growth rate of the tumour follows a lineal function and that most of its activity takes place at the outer tumour boundary. This establishes a huge difference in the number of cell divisions that a cell located at the tumour boundary undergoes from the original tumour cell, when compared to the traditional model based on the Gompertzian growth pattern. Considering a tumour 2 cm3 in volume, following the previous model, a cell at the boundary of the tumour will divide 32 times from the original tumour seed, and using the new growth dynamics for solid tumour, the number of boundary cell divisions is estimated at 800 times from the original tumour seed.

Bearing in mind that there is a correlation between the genetic evolution (accumulation of anomalies and aberrations) and the number of cell divisions of a cell, and that the cells at the tumour boundary are always the ones with the largest number of divisions, there must exist a difference in the genetic expression inside the solid tumour depending on the distance from the tumour seed. Based on this hypothesis, the research groups managed by Dr. Antonio Brú from the department of applied mathematics at the Universidad Complutense de Madrid and Dr. López-Collazo from the research and investigation department at the La Paz hospital in Madrid, started working on the study of the genetic expression profiles of sample cells from the C6 cell line of brain tumours inoculated in rats. Several researchers from different Spanish research institutions participated in the study; the genetic expression of samples at the centre, the outer tumour boundary and the healthy adjacent tissue were analysed.

... more about:
»Brú »Dynamics »Evolution »Genetic »Solid

The results of the investigation are now published in the December edition of the specialised magazine Medical Oncology (Position-dependent expression of GADD45alpha in rat brain tumours. Brú A, Del Fresno C, Soares-Schanoski A, Albertos S, Brú I, Porres A, Rollán-Landeras E, Dopazo A, Casero D, Gómez-Piña V, García L, Arnalich F, Alvarez R, Rodríguez-Rojas A, Fuentes-Prior P, López-Collazo E. Med Oncol. 2007;24 (4):436-44). Among the conclusions reached, the most relevant comes from the difference in the nuclear protein GADD45a, which regulates the cellular response to DNA damage and stress signals. This protein is expressed in many normal tissues, particularly in cells in a quiescent state (G0 phase of the cell cycle). The concentration of GADD45a increases during G1 phase of the cell cycle and greatly decreases when the cell is at S phase, demonstrating its crucial role in the response function to many stress or genotoxic signals. This protein has also been related to the programmed cell-death, the survival of cells and their innate immunity. In particular, it has been demonstrated that it inhibits cyclin B/CDC2, which constitutes a protein complex that controls the transition G2/M in the cellular cycle.

According to the conclusions, this protein is expressed in much higher levels at the boundary than at the inside of solid tumours. This gives GADD45a a more important role in the evolution of the tumour and its invasive capability. The control of this cellular apoptosis regulator at the tumour expansion boundary is predicted by the universal dynamics of tumour growth elaborated by Dr. Brú and his team over the last few years. These results allow for a better understanding of the genetic and phenotypic evolution that are currently explained in different theories of evolution as well as relating it to the growth dynamics of the tumour.

Área de Cultura Científica | alfa
Further information:
http://www.ucm.es

Further reports about: Brú Dynamics Evolution Genetic Solid

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>