Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find protein potential drug target for treatment-resistant prostate cancer

03.01.2008
Scientists at Jefferson’s Kimmel Cancer Center in Philadelphia have found that a signaling protein that is key to prostate cancer cell growth is turned on in nearly all recurrent prostate cancers that are resistant to hormone therapy. If the findings hold up, the protein, called Stat5, may be a specific drug target against an extremely difficult-to-treat cancer.

In addition, the researchers, led by Marja Nevalainen, M.D., Ph.D., associate professor of Cancer Biology at Jefferson Medical College of Thomas Jefferson University, also showed that the convergence of two biological pathways could be responsible for making such hormone-resistant prostate cancers especially dangerous. They have found that a synergy between Stat5 and hormone receptors in recurrent prostate cancer cells helps each maintain its activity. Dr. Nevalainen and her co-workers report their findings January 1, 2008 in the journal Cancer Research.

“These findings validate Stat5 as a potential drug target in prostate cancer, and in particular, in a form of prostate cancer for which there are no effective therapies,” Dr. Nevalainen says.

Men with primary prostate cancer usually have either surgery or radiation, whereas subsequent disease is frequently treated by hormone therapy. But if the cancer recurs again, years later, it can be more aggressive and typically fails to respond to hormone treatment. In previous work, the researchers showed that when Stat5 is turned on in primary prostate cancer, men are more likely to have recurrent disease.

In the current study, the team examined human prostate cancer cells of 198 patients with prostate cancer recurrence. They found that Stat5 was active in 74 percent of all recurrent prostate cancers. Of these patients, 127 had been treated with androgen deprivation therapy. The researchers found Stat5 was active in 95 percent of these hormone resistant tumors, meaning it was more likely to be active if the patient had been treated with hormone deprivation therapy.

Dr. Nevalainen shows that Stat5 interacts with the androgen receptors and keeps them “transcriptionally active.” Next, the scientists would like to conduct tests in animal models to see if this synergy promotes androgen-independent prostate tumor growth, and whether or not Stat5 synergizes with androgen receptors activated by adrenal androgens, which are present in the absence of testicular androgens during the hormone therapy of prostate cancer in patients.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: Androgen Nevalainen Protein Stat5 Target prostate cancer recurrent

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>