Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find protein potential drug target for treatment-resistant prostate cancer

03.01.2008
Scientists at Jefferson’s Kimmel Cancer Center in Philadelphia have found that a signaling protein that is key to prostate cancer cell growth is turned on in nearly all recurrent prostate cancers that are resistant to hormone therapy. If the findings hold up, the protein, called Stat5, may be a specific drug target against an extremely difficult-to-treat cancer.

In addition, the researchers, led by Marja Nevalainen, M.D., Ph.D., associate professor of Cancer Biology at Jefferson Medical College of Thomas Jefferson University, also showed that the convergence of two biological pathways could be responsible for making such hormone-resistant prostate cancers especially dangerous. They have found that a synergy between Stat5 and hormone receptors in recurrent prostate cancer cells helps each maintain its activity. Dr. Nevalainen and her co-workers report their findings January 1, 2008 in the journal Cancer Research.

“These findings validate Stat5 as a potential drug target in prostate cancer, and in particular, in a form of prostate cancer for which there are no effective therapies,” Dr. Nevalainen says.

Men with primary prostate cancer usually have either surgery or radiation, whereas subsequent disease is frequently treated by hormone therapy. But if the cancer recurs again, years later, it can be more aggressive and typically fails to respond to hormone treatment. In previous work, the researchers showed that when Stat5 is turned on in primary prostate cancer, men are more likely to have recurrent disease.

In the current study, the team examined human prostate cancer cells of 198 patients with prostate cancer recurrence. They found that Stat5 was active in 74 percent of all recurrent prostate cancers. Of these patients, 127 had been treated with androgen deprivation therapy. The researchers found Stat5 was active in 95 percent of these hormone resistant tumors, meaning it was more likely to be active if the patient had been treated with hormone deprivation therapy.

Dr. Nevalainen shows that Stat5 interacts with the androgen receptors and keeps them “transcriptionally active.” Next, the scientists would like to conduct tests in animal models to see if this synergy promotes androgen-independent prostate tumor growth, and whether or not Stat5 synergizes with androgen receptors activated by adrenal androgens, which are present in the absence of testicular androgens during the hormone therapy of prostate cancer in patients.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: Androgen Nevalainen Protein Stat5 Target prostate cancer recurrent

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>