Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pourquié lab links beta-catenin gradient to process of somite formation

03.01.2008
The Stowers Institute’s Pourquié Lab has demonstrated the importance of Beta-catenin, a key component of the Wnt-signaling pathway in the process of somite formation. The work has been published on the Web site of Nature Cell Biology and will appear in a future print issued. It was conducted using a novel real-time imaging technology.

The team analyzed the somite segmentation process that results in the formation of the vertebral column. This process is thought to be controlled by two components: a molecular oscillator (the segmentation clock), and the graded activity of several major signaling pathways (the gradient) in the presomitic mesoderm (PSM). The PSM is the middle layer of the three cell layers that form an early embryo. Wnt-signaling has been implicated in both these mechanisms, but precisely how was unclear until now.

In this work, the Pourquié team tested the importance of Beta-catenin, a protein that functions as the principal mediator of the Wnt-signaling pathway, in the process of somite formation. They showed that a newly identified Beta-catenin protein gradient in the PSM is critical in regulating mesoderm maturation. Real-time imaging experiments also demonstrated that, conversely, the segmentation clock is not caused by graded levels of Beta-catenin protein.

“We were able to demonstrate that increasing Beta-catenin protein levels dramatically alters PSM maturation,” said Alexander Aulehla, M.D., Senior Research Associate and first author on the paper. “But, by using the real-time imaging technique in mouse embryos, we could show that increasing Beta-catenin also corresponded with ongoing, even ectopic, oscillations of the segmentation clock, which controls the rate of somite development.”

“This work offers novel insights into how the mechanisms of maturation and oscillation in the PSM are controlled and how they are interconnected,” said Olivier Pourquié, Ph.D., Investigator and senior author on the paper. “Additionally, this project has allowed us to achieve the longstanding goal of visualizing the segmentation clock in real-time using fluorescence-based imaging, which is sure to impact other important projects in our lab”

Since joining the Stowers Institute in 2002, the Pourquié Lab has made a number of significant discoveries related to somite development. Somites eventually give rise to the vertebral column, which is malformed in people born with congenital scoliosis. It is believed that some cases of congenital scoliosis are caused by mutations related to the segmentation clock.

Marie Jennings | EurekAlert!
Further information:
http://www.stowers-institute.org
http://www.stowers-institute.org/labs/PourquieLab.asp

Further reports about: Beta-Catenin Gradient PSM Pourquié segmentation somite

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>