Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New plant study reveals a 'deeply hidden' layer of the transcriptome

03.01.2008
Cells keep a close watch over the transcriptome – the totality of all parts of the genome that are expressed in any given cell at any given time. Researchers at the Salk Institute for Biological Studies and the University of Missouri-Kansas City teamed up to peel back another layer of transcriptional regulation and gain new insight into how genomes work.

Converting the “genetic blueprint” into molecular building blocks requires two basic processes: transcription, which copies the information from DNA into RNA transcripts and takes place in the cell’s nucleus, and translation, where the RNA serves as a template to manufacture proteins outside the nucleus.

But before transcripts can guide protein synthesis or take on regulatory functions, they have to undergo a strict mRNA surveillance system that degrades defective, obsolete, and surplus transcripts. In their study, published in the Dec. 28 issue of Cell, the scientists zoomed in on a specific subclass of transcripts that are under the control of the exosome, a molecular machine in charge of controlled RNA degradation.

“We found evidence for widespread exosome-mediated RNA quality control in plants and a ‘deeply hidden’ layer of the transcriptome that is tightly regulated by exosome activity,” says Joseph R. Ecker, Ph.D., professor in the Plant Biology Laboratory and director of the Salk Institute Genomic Analysis Laboratory.

... more about:
»Genome »Layer »RNA »exosome »transcriptome

Since the exosome is in the business of chewing things up, the scientists inactivated the multi-unit complex to bring its otherwise invisible substrates to the fore. Then they combed the transcriptional landscape for hitherto unseen peaks of transcripts that now were untouched by the degrading force of the exosome complex and came up with a genome-wide atlas of Arabidopsis exosome targets.

“Our careful design and rigorous validation of the system for conditionally and quickly inactivating the exosome turned out to be really crucial for homing in on its RNA targets,” explains Dmitry A. Belostotsky of the University of Missouri-Kansas City. “On the other hand, genome-wide analyses of permanent genetic mutations often produce a complex mixture of direct and indirect effects, making it very hard to untangle. Thus, we think our strategy has a broadly-applicable value.”

“From a genomics perspective it really allowed us to visualize what information from the genome is actually expressed,” adds co-first author Brian D. Gregory, Ph.D., a postdoctoral researcher in Ecker’s lab. “When you knock down exosome activity, you see changes in the transcriptome that are not visible under any other circumstance.”

Since the common notion is that the exosome plays a central role in bulk RNA turnover, the researchers say, they expected to find the levels of all transcripts increasing when they inactivated the exosome complex. “But not everything is going up, instead the exosome mechanism seems to be very tightly regulated,” says Ecker. “We didn’t see regions that are known to be silenced to go up, instead we found a very specific group of transcripts that are regulated in this way.”

Among them are regular protein-coding RNAs, RNA processing intermediates and hundreds of non-coding RNAs, the vast majority of which hadn’t been described before. “These strange transcripts are associated with small RNA-producing loci as well as with repetitive sequence elements,” says Gregory. “They are under very tight regulation by the exosome, but we still don’t know exactly what this means.”

“It is likely that these RNAs that are usually ‘deeply hidden’ become important for genome function or stability under some circumstances”, adds co-first author Julia Chekanova, an assistant at the University of Missouri-Kansas City. “We need to do more work to figure out what these circumstances are.”

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Genome Layer RNA exosome transcriptome

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>