Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymerization From the Individual Molecule’s Point of View

18.12.2007
Following radical polymerization with single-molecule spectroscopy of fluorescing probes

Plastics are becoming more and more important and are an indispensable part of modern life. Scientists are thus interested in clearing up the details of polymerization processes, in which individual molecular building blocks are linked into long polymer chains or three-dimensional networks.

A Belgian and German team from the University of Leuwen and the Max Planck Institute for Polymer Research in Mainz has now been able to follow polymerizations from the point of view of individual molecules. As they report in the journal Angewandte Chemie, Johan Hofkens and his team used the techniques of fluorescence correlation spectroscopy and far-field microscopy to observe fluorescing sample molecules throughout the entire process of the radical polymerization of styrene.

Previous methods applied to this problem provided interesting insights into the reaction pathways of polymerizations; however, most are not capable of monitoring the entire reaction process. In addition, they only provide a picture of the reaction that is averaged over all of the molecules. Irregularities that occur during the polymerization cannot be recorded at the molecular level, although such heterogeneities have a large influence on the properties of the final polymer. Knowledge of such details can help to make polymerization processes easier to control and to improve the properties of the products.

Single-molecule spectroscopy does not average out differences between individual molecules; instead it highlights them. The researchers followed the polymerization by using fluorescing probes. During the reaction, which converts a solution of monomers into an ever-denser polymer matrix, the freedom of movement of the probe molecules is constantly decreasing. Fluorescence correlation spectroscopy makes it possible to measure the time during which individual probe molecules stay within a tiny defined space. This then enables the registration of the rapid molecular motions occurring in the barely reacted solution. Far-field microscopy directly displays the positions of the fluorescing probes and is well suited for following slow and immobilized molecules. The two methods are complementary and together they provide a picture of the translational motions throughout the entire polymerization process. Additional information is provided by probe molecules built in to the growing polymer.

Author: Johan Hofkens, Katholieke Universiteit Leuven, Heverlee (Belgium), http://www.chem.kuleuven.be/research/mds/index.htm

Title: Radical Polymerization Tracked by Single Molecule Spectroscopy

Angewandte Chemie International Edition, doi: 10.1002/anie.200704196

Johan Hofkens | Angewandte Chemie
Further information:
http://www.chem.kuleuven.be/research/mds/index.htm
http://pressroom.angewandte.org

Further reports about: Polymer Probe fluorescing individual polymerization spectroscopy

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>