Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymerization From the Individual Molecule’s Point of View

18.12.2007
Following radical polymerization with single-molecule spectroscopy of fluorescing probes

Plastics are becoming more and more important and are an indispensable part of modern life. Scientists are thus interested in clearing up the details of polymerization processes, in which individual molecular building blocks are linked into long polymer chains or three-dimensional networks.

A Belgian and German team from the University of Leuwen and the Max Planck Institute for Polymer Research in Mainz has now been able to follow polymerizations from the point of view of individual molecules. As they report in the journal Angewandte Chemie, Johan Hofkens and his team used the techniques of fluorescence correlation spectroscopy and far-field microscopy to observe fluorescing sample molecules throughout the entire process of the radical polymerization of styrene.

Previous methods applied to this problem provided interesting insights into the reaction pathways of polymerizations; however, most are not capable of monitoring the entire reaction process. In addition, they only provide a picture of the reaction that is averaged over all of the molecules. Irregularities that occur during the polymerization cannot be recorded at the molecular level, although such heterogeneities have a large influence on the properties of the final polymer. Knowledge of such details can help to make polymerization processes easier to control and to improve the properties of the products.

Single-molecule spectroscopy does not average out differences between individual molecules; instead it highlights them. The researchers followed the polymerization by using fluorescing probes. During the reaction, which converts a solution of monomers into an ever-denser polymer matrix, the freedom of movement of the probe molecules is constantly decreasing. Fluorescence correlation spectroscopy makes it possible to measure the time during which individual probe molecules stay within a tiny defined space. This then enables the registration of the rapid molecular motions occurring in the barely reacted solution. Far-field microscopy directly displays the positions of the fluorescing probes and is well suited for following slow and immobilized molecules. The two methods are complementary and together they provide a picture of the translational motions throughout the entire polymerization process. Additional information is provided by probe molecules built in to the growing polymer.

Author: Johan Hofkens, Katholieke Universiteit Leuven, Heverlee (Belgium), http://www.chem.kuleuven.be/research/mds/index.htm

Title: Radical Polymerization Tracked by Single Molecule Spectroscopy

Angewandte Chemie International Edition, doi: 10.1002/anie.200704196

Johan Hofkens | Angewandte Chemie
Further information:
http://www.chem.kuleuven.be/research/mds/index.htm
http://pressroom.angewandte.org

Further reports about: Polymer Probe fluorescing individual polymerization spectroscopy

More articles from Life Sciences:

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

nachricht New map may lead to drug development for complex brain disorders, USC researcher says
25.07.2017 | University of Southern California

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA flights gauge summer sea ice melt in the Arctic

25.07.2017 | Earth Sciences

Fungi that evolved to eat wood offer new biomass conversion tool

25.07.2017 | Life Sciences

New map may lead to drug development for complex brain disorders, USC researcher says

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>