Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecular code broken for drug industry's pet proteins

All cells are surrounded by protective, fatty membranes.In the cell membrane there are thousands of membrane proteins that transport nutritional substances, ions, and water through the membrane.

Membrane proteins are also necessary for cells to recognize each other in the body and for a nervous system, for example, to be formed. Researchers at Stockholm University in Sweden have now managed to reveal the "molecular code" that governs the insertion of proteins in the cell membrane.

This work is reported in an article being published on December 13 in the journal Nature.

About 25 percent of all proteins in a cell are found in the cell membrane. Since they regulate all communication between the inside of the cell and the surrounding environment, many membrane proteins are crucial to the life of the cell. Disruptions of their functions often lead to diseases of various kinds. For the drug industry, membrane proteins are high priority "drug targets."

... more about:
»Drug »Membrane »cell membrane

To be suitable for deployment in the fatty cell membrane, all membrane proteins must be lipophiles ("fat-lovers"). All cells have special machinery for producing and dealing with "fatty" proteins and to see to it that they are deployed in proper manner in the cell membrane. The Stockholm University scientists have developed a method for the detailed study of the properties of a membrane protein that are required for it to be recognized by the cell machinery. A couple of years ago the research team published a first article in Nature in which they managed to show that there is a "fat threshold" that determines whether a protein can be deployed to a membrane or not. In this new study they have fully revealed the molecular code that governs the structure of membrane proteins.

"Now that we have deciphered the code, we can determine with a high degree of certainty which parts of a protein will fasten in the membrane." says Gunnar von Heijne.

This new knowledge will help researchers all over the world who are trying to understand more about the cell and its membrane, not least in the drug industry.

"Interest in membrane proteins is at a peak right now, and our findings can be key pieces of the puzzle for pharmaceutical chemists working with drug design, for example," says Gunnar von Hejne.

Name of article
Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature, December 13.
For more information
Professor Gunnar von Heijne, Department of Biochemistry and Biophysics, Stockholm University. E-mail: Cell phone: +46 (0)70-394 1107
For image
Phone: +46 (0)8-16 40 90 or

Maria Erlandsson | idw
Further information:

Further reports about: Drug Membrane cell membrane

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>