Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Remote Brainwaves predict future Eureka Moment

10.09.2008
Real-world problems come in two broad flavors: those requiring sequential reasoning and those requiring transformative reasoning: a break from past thinking and restructuring followed by an insight (also known as Eureka or “Aha!”), which is a process by which a problem solver abruptly, through a quantum leap of understanding with no conscious forewarning, moves from a state of not knowing how to solve a problem to a state of knowing how to solve it.

Despite its widespread reports, the brain mechanism underlying eureka is poorly understood. What happens in the brain during that particular moment? Is that moment purely sudden as often reported by the solver or is there any (neural) precursor to it? Can we predict whether and when, if at all, the solver will hit upon the final eureka moment?

In a new study led by Joydeep Bhattacharya at Goldsmiths, University of London, these questions were addressed by measuring brainwaves of human participants as they attempted to solve puzzles or brainteasers that call for intuitive strategies and novel insight. They detected an array of specific patterns in characteristic brainwaves which occurred several (up to 8) seconds before the participant was consciously aware of an insight. Right hemisphere was further found to be critically involved in transformative reasoning.

These results indicate that insight is a distinct spectral, spatial, and temporal pattern of unconscious neural activity corresponding to pre-solution cognitive processes, and not to one’s self-assessment of their insight or the emotional “Aha!” that accompanies problem solution. Further, this study also postulates that consciousness is like an emergent tip of an iceberg of neuronal information processing, and remote brainwave patterns could reveal the underlying structure leading to that emergence.

The study was done in collaboration with Bhavin Sheth at the University of Houston and with Simone Sandkühler from the Austrian Academy of Sciences.

Sarah Empey | alfa
Further information:
http://www.gold.ac.uk

Further reports about: Brainwaves EUREKA Insight brain mechanism brainteasers brainwave distinct spectral solve

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>