Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Remote Brainwaves predict future Eureka Moment

10.09.2008
Real-world problems come in two broad flavors: those requiring sequential reasoning and those requiring transformative reasoning: a break from past thinking and restructuring followed by an insight (also known as Eureka or “Aha!”), which is a process by which a problem solver abruptly, through a quantum leap of understanding with no conscious forewarning, moves from a state of not knowing how to solve a problem to a state of knowing how to solve it.

Despite its widespread reports, the brain mechanism underlying eureka is poorly understood. What happens in the brain during that particular moment? Is that moment purely sudden as often reported by the solver or is there any (neural) precursor to it? Can we predict whether and when, if at all, the solver will hit upon the final eureka moment?

In a new study led by Joydeep Bhattacharya at Goldsmiths, University of London, these questions were addressed by measuring brainwaves of human participants as they attempted to solve puzzles or brainteasers that call for intuitive strategies and novel insight. They detected an array of specific patterns in characteristic brainwaves which occurred several (up to 8) seconds before the participant was consciously aware of an insight. Right hemisphere was further found to be critically involved in transformative reasoning.

These results indicate that insight is a distinct spectral, spatial, and temporal pattern of unconscious neural activity corresponding to pre-solution cognitive processes, and not to one’s self-assessment of their insight or the emotional “Aha!” that accompanies problem solution. Further, this study also postulates that consciousness is like an emergent tip of an iceberg of neuronal information processing, and remote brainwave patterns could reveal the underlying structure leading to that emergence.

The study was done in collaboration with Bhavin Sheth at the University of Houston and with Simone Sandkühler from the Austrian Academy of Sciences.

Sarah Empey | alfa
Further information:
http://www.gold.ac.uk

Further reports about: Brainwaves EUREKA Insight brain mechanism brainteasers brainwave distinct spectral solve

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>