Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare and common genetic variations responsible for high triglyceride levels in blood

26.07.2010
It can make blood look like cream of tomato soup. Patients with high levels of triglycerides in their blood, a disease called hypertriglyceridemia (HTG) face an increased risk for heart disease and stroke. HTG affects one in 20 people in North America and is also associated with obesity, diabetes and pancreatitis.

Most people now understand the importance of LDL, the bad cholesterol and HDL, the good cholesterol, to their overall health. But high triglycerides are like the Rodney Dangerfield of the lipid world: they get less respect and notoriety compared to their cholesterol cousins. Doctors are often uncertain about how best to treat patients with this condition. Understanding the genes that make patients susceptible to HTG could provide clues to newer, better treatments.

In a new study published online in Nature Genetics, Dr. Robert Hegele of the Robarts Research Institute, Schulich School of Medicine & Dentistry at The University of Western Ontario (London, Canada) has shown that it's a combination of both common and rare variants or 'misprints' in several genes that add up and put a patient at risk of developing HTG. Working with graduate student Christopher Johansen, Dr. Hegele used two different methods to uncover the complex genetic basis of HTG in more than 500 patients.

First, using DNA microarrays (also called gene chips) the researchers found that commonplace variants in four different genes are strongly related to having HTG. Next, using detailed DNA sequence analysis, they found that patients with HTG also had an excess of rare variants - ones only found in one or two people – in these same four genes. Cumulatively, the rare variants were found in 28 per cent of HTG patients, about twice the rate seen in healthy controls.

"This is one of the first studies that combined gene chips with DNA sequencing to examine the genomes of patients", explains Dr. Hegele, an endocrinologist and professor in the Departments of Biochemistry and Medicine at Western. "It was fortunate that we used both methods. Gene chip studies are popular nowadays and are effective at finding relationships between common genetic variants and disease. But gene chips cannot detect rare variants. For that, you need to do the more expensive and time-consuming method of DNA sequencing."

Scientists have long suspected that both common and rare genetic variants contribute to many diseases, but the study from the Robarts group now definitively shows that this is the case.

"It's also instructive that one single gene is not solely responsible for high triglyceride levels but rather a mosaic of both common and rare variations in several genes." Dr. Hegele adds that these rare variants now help explain the missing heritability of lipid traits. "It means that to get a full picture of a patient's genetic risk, you need to consider both common and rare variants in many genes simultaneously, and to use methods that will detect both types of variation."

The research was supported by Genome Canada through the Ontario Genomics Institute, the Canadian Institutes of Health Research, and the Heart and Stroke Foundation of Ontario. Dr. Hegele holds the Edith Schulich Vinet Canada Research Chair in Human Genetics, the Jacob J. Wolfe Distinguished Medical Research Chair and the Martha G. Blackburn Chair in Cardiovascular Research. He is also the Director of the London Regional Genomics Centre.

Kathy Wallis | EurekAlert!
Further information:
http://www.uwo.ca

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>