Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare and common genetic variations responsible for high triglyceride levels in blood

26.07.2010
It can make blood look like cream of tomato soup. Patients with high levels of triglycerides in their blood, a disease called hypertriglyceridemia (HTG) face an increased risk for heart disease and stroke. HTG affects one in 20 people in North America and is also associated with obesity, diabetes and pancreatitis.

Most people now understand the importance of LDL, the bad cholesterol and HDL, the good cholesterol, to their overall health. But high triglycerides are like the Rodney Dangerfield of the lipid world: they get less respect and notoriety compared to their cholesterol cousins. Doctors are often uncertain about how best to treat patients with this condition. Understanding the genes that make patients susceptible to HTG could provide clues to newer, better treatments.

In a new study published online in Nature Genetics, Dr. Robert Hegele of the Robarts Research Institute, Schulich School of Medicine & Dentistry at The University of Western Ontario (London, Canada) has shown that it's a combination of both common and rare variants or 'misprints' in several genes that add up and put a patient at risk of developing HTG. Working with graduate student Christopher Johansen, Dr. Hegele used two different methods to uncover the complex genetic basis of HTG in more than 500 patients.

First, using DNA microarrays (also called gene chips) the researchers found that commonplace variants in four different genes are strongly related to having HTG. Next, using detailed DNA sequence analysis, they found that patients with HTG also had an excess of rare variants - ones only found in one or two people – in these same four genes. Cumulatively, the rare variants were found in 28 per cent of HTG patients, about twice the rate seen in healthy controls.

"This is one of the first studies that combined gene chips with DNA sequencing to examine the genomes of patients", explains Dr. Hegele, an endocrinologist and professor in the Departments of Biochemistry and Medicine at Western. "It was fortunate that we used both methods. Gene chip studies are popular nowadays and are effective at finding relationships between common genetic variants and disease. But gene chips cannot detect rare variants. For that, you need to do the more expensive and time-consuming method of DNA sequencing."

Scientists have long suspected that both common and rare genetic variants contribute to many diseases, but the study from the Robarts group now definitively shows that this is the case.

"It's also instructive that one single gene is not solely responsible for high triglyceride levels but rather a mosaic of both common and rare variations in several genes." Dr. Hegele adds that these rare variants now help explain the missing heritability of lipid traits. "It means that to get a full picture of a patient's genetic risk, you need to consider both common and rare variants in many genes simultaneously, and to use methods that will detect both types of variation."

The research was supported by Genome Canada through the Ontario Genomics Institute, the Canadian Institutes of Health Research, and the Heart and Stroke Foundation of Ontario. Dr. Hegele holds the Edith Schulich Vinet Canada Research Chair in Human Genetics, the Jacob J. Wolfe Distinguished Medical Research Chair and the Martha G. Blackburn Chair in Cardiovascular Research. He is also the Director of the London Regional Genomics Centre.

Kathy Wallis | EurekAlert!
Further information:
http://www.uwo.ca

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>