Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare and common genetic variations responsible for high triglyceride levels in blood

26.07.2010
It can make blood look like cream of tomato soup. Patients with high levels of triglycerides in their blood, a disease called hypertriglyceridemia (HTG) face an increased risk for heart disease and stroke. HTG affects one in 20 people in North America and is also associated with obesity, diabetes and pancreatitis.

Most people now understand the importance of LDL, the bad cholesterol and HDL, the good cholesterol, to their overall health. But high triglycerides are like the Rodney Dangerfield of the lipid world: they get less respect and notoriety compared to their cholesterol cousins. Doctors are often uncertain about how best to treat patients with this condition. Understanding the genes that make patients susceptible to HTG could provide clues to newer, better treatments.

In a new study published online in Nature Genetics, Dr. Robert Hegele of the Robarts Research Institute, Schulich School of Medicine & Dentistry at The University of Western Ontario (London, Canada) has shown that it's a combination of both common and rare variants or 'misprints' in several genes that add up and put a patient at risk of developing HTG. Working with graduate student Christopher Johansen, Dr. Hegele used two different methods to uncover the complex genetic basis of HTG in more than 500 patients.

First, using DNA microarrays (also called gene chips) the researchers found that commonplace variants in four different genes are strongly related to having HTG. Next, using detailed DNA sequence analysis, they found that patients with HTG also had an excess of rare variants - ones only found in one or two people – in these same four genes. Cumulatively, the rare variants were found in 28 per cent of HTG patients, about twice the rate seen in healthy controls.

"This is one of the first studies that combined gene chips with DNA sequencing to examine the genomes of patients", explains Dr. Hegele, an endocrinologist and professor in the Departments of Biochemistry and Medicine at Western. "It was fortunate that we used both methods. Gene chip studies are popular nowadays and are effective at finding relationships between common genetic variants and disease. But gene chips cannot detect rare variants. For that, you need to do the more expensive and time-consuming method of DNA sequencing."

Scientists have long suspected that both common and rare genetic variants contribute to many diseases, but the study from the Robarts group now definitively shows that this is the case.

"It's also instructive that one single gene is not solely responsible for high triglyceride levels but rather a mosaic of both common and rare variations in several genes." Dr. Hegele adds that these rare variants now help explain the missing heritability of lipid traits. "It means that to get a full picture of a patient's genetic risk, you need to consider both common and rare variants in many genes simultaneously, and to use methods that will detect both types of variation."

The research was supported by Genome Canada through the Ontario Genomics Institute, the Canadian Institutes of Health Research, and the Heart and Stroke Foundation of Ontario. Dr. Hegele holds the Edith Schulich Vinet Canada Research Chair in Human Genetics, the Jacob J. Wolfe Distinguished Medical Research Chair and the Martha G. Blackburn Chair in Cardiovascular Research. He is also the Director of the London Regional Genomics Centre.

Kathy Wallis | EurekAlert!
Further information:
http://www.uwo.ca

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>