Highest X-ray energy used to probe materials

Using the Linac Coherent Light Source (LCLS) facility at the SLAC National Accelerator Laboratory, Lawrence Livermore scientists probed nitrogen gas at X-ray energies of up to 8 keV (kiloelectronvolts), the highest X-ray energy ever used at an XFEL, to see how it behaved when the laser hit it.

The photoluminescence-based pulse-energy detector allowed the team to study the interaction – including electron dynamics and space charge effects – between nitrogen gas and the XFEL beam. Understanding the precise dynamics at work on these scales will forever change the understanding of chemistry, physics and materials science.

The XFEL's light is so bright at 8 kilo electron volts and so fast (it has a pulse length from 10 femtoseconds to 100 femtoseconds) that LLNL scientists were able to validate the physics of simulations done using nitrogen gas. (One femtosecond is one quadrillionth of a second).

“The detailed physics is very important for most LCLS experiments since it determines the interpretation of the results,” said Lab scientist Stefan Hau-Riege. “The unique thing about this experiment is that it was performed upstream from the LCLS mirrors, and so we had access to the full range of LCLS X-ray energies (which went up to 8 keV at the time).”

The heart of the LCLS is a free-electron laser that produces beams of coherent, high-energy X-rays. Coherence – the phenomenon of all photons in a beam acting together in perfect lockstep – makes laser light far brighter than ordinary light. Since X-ray photons at the LCLS are coherent, the resulting beam of light will be as much as a billion times brighter than any other X-ray light source available today.

The LCLS also contains a femto-camera that can sequence together images of the ultra small, taken with the ultrafast pulses of the LCLS. Scientists are for the first time creating molecular movies, revealing the frenetic action of the atomic world.

The LCLS, and its cousins planned in Germany and Japan, improves on third-generation light sources. The third-generation sources are circular, stadium-size synchrotrons, and they produce streams of incoherent X-ray photons. Since their pulses are long compared to the motion of electrons around an atom, synchrotron light sources cannot begin to explore the dynamic motion of molecules.

The pulses of light from the fourth-generation LCLS are so short, lasting for just quadrillionths of a second, that its beam provides an X-ray strobe light to capture such atomic and molecular behavior.

Other Livermore researchers include Richard Bionta, Dmitri Ryutov, Richard London, Elden Ables, Keith Kishiyama, Stewart Shen, Mark McKernan and Donn McMahon. Collaborators included the SLAC National Accelerator Laboratory and the Center for Free-Electron Laser Science, DESY, in Hamburg.

The research will appear in the July 27 online edition of Physical Review Letters.

Founded in 1952, Lawrence Livermore National Laboratory (www.llnl.gov) is a national security laboratory that develops science and engineering technology and provides innovative solutions to our nation's most important challenges. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Laboratory news releases and photos are also available at https://publicaffairs.llnl.gov/news/releases.html

Media Contact

Anne Stark EurekAlert!

More Information:

http://www.llnl.gov

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors