Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein analysis: Less is more

28.03.2018

CONAN to the rescue! The new software-package for molecular dynamic simulations compresses 3D data to contact maps and helps to analyze protein structures. The tool developed at HITS CONAN (CONtact ANalysis) has now been presented in the latest issue of „Biophysical Journal“.

Proteins constantly move and change their conformation. Molecular dynamics typically answers the question of what the possible conformations of proteins are. Proteins, however, have a highly complicated and crowded structure, and understanding the changes in their behavior is a challenging task due to the high number of coordinates to monitor.


CONAN transforms the 3D structure of the protein ubiquitin into a 2D contact map. Left: Structure of ubiquitin, colored by residue index. Right: Inter-residue distance map computed by CONAN.

Image: Csaba Daday, HITS

Digesting the large amount of molecular data often involves creative 3D visualization, but even with considerable effort, important details can be missed. This led to a dual problem; not only was data visualization a challenge, but scientists also ran the risk of overlooking aspects of their own results.

A novel tool called CONAN (CONtact ANalysis), developed from the “Molecular Biomechanics” at HITS, can alleviate these issues through compressing this 3D data into simpler 2D images capturing the key interactions, named contact maps.

Contact maps measure inter-residue distances, thereby compressing 3D structures into 2D images. This often facilitates data interpretation and makes important changes easier to spot. These contact maps have usually only been used to study single protein structures as a single snapshot, but in fact they can easily be obtained for many structures, resulting in a contact map movie.

This analysis somehow extends the saying "a figure is worth more than 1000 words" into the dynamic regime, since it creates a multitude of possible contact-map snapshots out of one simulation, identifying conformational subpopulations and transitions.

Until now, contact maps-based analysis methods have been widely used only as understanding single structures, such as those in the protein data base (PDB). Even when the methods were generalized for dynamic simulations, the implementations were often various “ad hoc” analysis scripts, since there wasn’t a standardized tool.

This meant that the measured quantities and definitions were inconsistent and results weren’t directly comparable. The new tool “CONAN” however is a standardized, easy-to-use package that allows several different types of analyses, for example including principal component analysis and cluster analysis.

The tool developed by the HITS researchers Csaba Daday and Frauke Gräter of the Molecular Biomechanics group as well as former group member Davide Mercadante therefore fills a gap and offers a comprehensive, user-friendly program requiring no programming experience that can help scientists performing molecular dynamics calculations understand and present their data.

Hopefully, this will lead to a more widespread use of these measures, and a more uniform set of definitions. The tool is open access and free of use. The team at HITS also constantly optimizes the software and is open to feedback from the community.

CONAN is freely available at: https://github.com/HITS-MBM/conan/tree/master/docs
Examples and illustrations can be found on our blog: https://contactmaps.blogspot.de/ and our YouTube channel: https://www.youtube.com/channel/UCEjgMtcojYuucVLI2PPv7oA

Article in "Biophysical Journal":
CONAN: A Tool to Decode Dynamical Information from Molecular Interaction Maps. Davide Mercadante, Frauke Gräter, Csaba Daday. Biophysical Journal,
Volume 114, Issue 6, p1267–1273, 27 March 2018. DOI: https://doi.org/10.1016/j.bpj.2018.01.033
http://www.cell.com/biophysj/fulltext/S0006-3495(18)30193-0

Scientific Contact:

Prof. Dr. Frauke Gräter
Group Leader „Molecular Biomechanics“
HITS - Heidelberg Institute for Theoretical Studies
E-mail: frauke.graeter@h-its.org

Dr. Csaba Daday
Group Member „Molecular Biomechanics“
HITS - Heidelberg Institute for Theoretical Studies
E-mail: Csaba.Daday@h-its.org

About HITS

The Heidelberg Institute for Theoretical Studies (HITS) was established in 2010 by the physicist and SAP co-founder Klaus Tschira (1940-2015) and the Klaus Tschira Foundation as a private, non-profit research institute. HITS conducts basic research in the natural sciences, mathematics and computer science, with a focus on the processing, structuring, and analyzing of large amounts of complex data and the development of computational methods and software. The research fields range from molecular biology to astrophysics. The shareholders of HITS are the HITS Stiftung, which is a subsidiary of the Klaus Tschira Foundation, Heidelberg University and the Karlsruhe Institute of Technology (KIT). HITS also cooperates with other universities and research institutes and with industrial partners. The base funding of HITS is provided by the HITS Stiftung with funds received from the Klaus Tschira Foundation. The primary external funding agencies are the Federal Ministry of Education and Research (BMBF), the German Research Foundation (DFG), and the European Union.

Weitere Informationen:

https://www.h-its.org/scientific-news/protein-analysis-less-is-more/ HITS Press release
http://www.cell.com/biophysj/fulltext/S0006-3495(18)30193-0 Article in "Biophysical JOurnal"
example video: Ubiquitin unfolding and evolution of contact map

Dr. Peter Saueressig | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>