Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More promising natural gas storage?

07.11.2011
New method removes discovery bottleneck by identifying materials with promise
Porous crystals called metal-organic frameworks, with their nanoscopic pores and incredibly high surface areas, are excellent materials for natural gas storage. But with millions of different structures possible, where does one focus?

A Northwestern University research team has developed a computational method that can save scientists and engineers valuable time in the discovery process. The new algorithm automatically generates and tests hypothetical metal-organic frameworks (MOFs), rapidly zeroing in on the most promising structures. These MOFs then can be synthesized and tested in the lab.

Using their method, the researchers quickly identified more than 300 different MOFs that are predicted to be better than any known material for methane (natural gas) storage. The researchers then synthesized one of the promising materials and found it beat the U.S. Department of Energy (DOE) natural gas storage target by 10 percent.

There already are 13 million vehicles on the road worldwide today that run on natural gas -- including many buses in the U.S. -- and this number is expected to increase sharply due to recent discoveries of natural gas reserves.

In addition to gas storage and vehicles that burn cleaner fuel, MOFs may lead to better drug-delivery, chemical sensors, carbon capture materials and catalysts. MOF candidates for these applications could be analyzed efficiently using the Northwestern method.

"When our understanding of materials synthesis approaches the point where we are able to make almost any material, the question arises: Which materials should we synthesize?" said Randall Q. Snurr, professor of chemical and biological engineering in the McCormick School of Engineering and Applied Science. Snurr led the research. "This paper presents a powerful method for answering this question for metal-organic frameworks, a new class of highly versatile materials."

The study will be published Nov. 6 by the journal Nature Chemistry. It also will appear as the cover story in the February print issue of the journal.

Christopher E. Wilmer, a graduate student in Snurr's lab and first author of the paper, developed the new algorithm; Omar K. Farha, research associate professor of chemistry in the Weinberg College of Arts and Sciences, and Joseph T. Hupp, professor of chemistry, led the synthesis efforts.

"Currently, researchers choose to create new materials based on their imagining how the atomic structures might look," Wilmer said. "The algorithm greatly accelerates this process by carrying out such 'thought experiments' on supercomputers."

The researchers were able to determine which of the millions of possible MOFs from a given library of 102 chemical building block components were the most promising candidates for natural-gas storage. In just 72 hours, the researchers generated more than 137,000 hypothetical MOF structures. This number is much larger than the total number of MOFs reported to date by all researchers combined (approximately 10,000 MOFs). The Northwestern team then winnowed that number down to the 300 most promising candidates for high-pressure, room-temperature methane storage.

In synthesizing the natural-gas storage MOF that beat the DOE storage target by 10 percent, the research team showed experimentally that the material's actual performance agreed with the predicted properties.

The new algorithm combines the chemical "intuition" that chemists use to imagine novel MOFs with sophisticated molecular simulations to evaluate MOFs for their efficacy in different applications. The algorithm could help remove the bottleneck in the discovery process, the researchers said.

The title of the paper is "Large-Scale Screening of Hypothetical Metal-Organic Frameworks." In addition to Snurr, Hupp, Wilmer and Farha, other authors are Michael Leaf, Chang Yeon Lee and Brad G. Hauser, all from Northwestern.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>