Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More promising natural gas storage?

07.11.2011
New method removes discovery bottleneck by identifying materials with promise
Porous crystals called metal-organic frameworks, with their nanoscopic pores and incredibly high surface areas, are excellent materials for natural gas storage. But with millions of different structures possible, where does one focus?

A Northwestern University research team has developed a computational method that can save scientists and engineers valuable time in the discovery process. The new algorithm automatically generates and tests hypothetical metal-organic frameworks (MOFs), rapidly zeroing in on the most promising structures. These MOFs then can be synthesized and tested in the lab.

Using their method, the researchers quickly identified more than 300 different MOFs that are predicted to be better than any known material for methane (natural gas) storage. The researchers then synthesized one of the promising materials and found it beat the U.S. Department of Energy (DOE) natural gas storage target by 10 percent.

There already are 13 million vehicles on the road worldwide today that run on natural gas -- including many buses in the U.S. -- and this number is expected to increase sharply due to recent discoveries of natural gas reserves.

In addition to gas storage and vehicles that burn cleaner fuel, MOFs may lead to better drug-delivery, chemical sensors, carbon capture materials and catalysts. MOF candidates for these applications could be analyzed efficiently using the Northwestern method.

"When our understanding of materials synthesis approaches the point where we are able to make almost any material, the question arises: Which materials should we synthesize?" said Randall Q. Snurr, professor of chemical and biological engineering in the McCormick School of Engineering and Applied Science. Snurr led the research. "This paper presents a powerful method for answering this question for metal-organic frameworks, a new class of highly versatile materials."

The study will be published Nov. 6 by the journal Nature Chemistry. It also will appear as the cover story in the February print issue of the journal.

Christopher E. Wilmer, a graduate student in Snurr's lab and first author of the paper, developed the new algorithm; Omar K. Farha, research associate professor of chemistry in the Weinberg College of Arts and Sciences, and Joseph T. Hupp, professor of chemistry, led the synthesis efforts.

"Currently, researchers choose to create new materials based on their imagining how the atomic structures might look," Wilmer said. "The algorithm greatly accelerates this process by carrying out such 'thought experiments' on supercomputers."

The researchers were able to determine which of the millions of possible MOFs from a given library of 102 chemical building block components were the most promising candidates for natural-gas storage. In just 72 hours, the researchers generated more than 137,000 hypothetical MOF structures. This number is much larger than the total number of MOFs reported to date by all researchers combined (approximately 10,000 MOFs). The Northwestern team then winnowed that number down to the 300 most promising candidates for high-pressure, room-temperature methane storage.

In synthesizing the natural-gas storage MOF that beat the DOE storage target by 10 percent, the research team showed experimentally that the material's actual performance agreed with the predicted properties.

The new algorithm combines the chemical "intuition" that chemists use to imagine novel MOFs with sophisticated molecular simulations to evaluate MOFs for their efficacy in different applications. The algorithm could help remove the bottleneck in the discovery process, the researchers said.

The title of the paper is "Large-Scale Screening of Hypothetical Metal-Organic Frameworks." In addition to Snurr, Hupp, Wilmer and Farha, other authors are Michael Leaf, Chang Yeon Lee and Brad G. Hauser, all from Northwestern.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>