Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progeny of old parents have fewer offspring

10.03.2015

Long-term study in house sparrows shows a transgenerational age effect

Reproduction at old age involves risks that may impact ones’ own life and may impose reduced biological fitness on the offspring.


Male house sparrow: any offspring of his produced at an older age will also produce fewer young.

© A.Sanchez-Tojar

Such evidence, previously obtained in humans and other taxa under laboratory conditions, has now been confirmed by researchers from the Max Planck Institute for Ornithology in Seewiesen together with colleagues from the UK and New Zealand for the first time in free-living animals.

In a long-term study on a population of house sparrows they found that offspring of older parents themselves produced fewer young. Such a transgenerational effect is important for the understanding of the evolution of longevity.

Fertility does not decrease in all taxa with increasing age but may remain constant lifelong as is the case of some invertebrates or may even increase with increasing age as in some reptiles. Generally both sexes are able to reproduce at old age, with males capable of producing more offspring than females.

In some mammals such as humans male individuals remain fertile for a longer time compared to females that at some stage enter the menopause. However, reproducing at old age may incur risks such as a higher infant mortality or chromosomal anomalies. Moreover, children of old parents have themselves fewer offspring or have a shorter lifespan, which is commonly known as the “Lansing effect” that was demonstrated not only in humans but also in mice and some invertebrates in the laboratory but never in free living populations.

Julia Schroeder from the Max Planck Institute for Ornithology in Seewiesen has now investigated this effect in a population of house sparrows together with colleagues from the University of Sheffield and the University of Otago in New Zealand. Their study site is a small island off the coast of Devon in Southwestern England where the researchers have monitored and ringed the entire house sparrow population in the course of more than 10 years.

The researchers took blood samples from the parents and their offspring in order to determine genetic parentage. That way they obtained a unique and detailed genetic pedigree of more than 5000 birds with a precise knowledge of the age and the number of offspring for each individual. Birds stayed the entire life on this remote island that is 19 km off the coast.

During 12 years, only four sparrows could genetically not be assigned to parents living on the island, suggesting that these birds were immigrants. To test whether a possible effect is inherited or due to environmental factors entire clutches were systematically cross-fostered.

The analysis revealed a clear result. First, old mothers had a negative effect on the fitness of their daughters, meaning that these daughters produced fewer young. Similarly, older fathers produced sons that had fewer offspring. In particular, this has negative consequences for offspring that resulted from extra-pair matings, as a previous study has shown that house sparrow females seek extra-pair matings preferably with older males. Hence, according to the results of the present study, a female strategy to mate with viable males proves to be disadvantageous.

“Thus, these results cannot be explained by changes of the environment but rather by the constitution of the parents, which changes with increasing age through epigenetic processes. This transgenerational age effect may change the selection pressure on longevity within a population”, says Julia Schroeder, first author of the study. “The results are potentially important for breeding management programs of endangered species that often use old individuals from different populations to maintain genetic variability”, adds the researcher.


Contact

Dr. Julia Schroeder
Research Group Leader

Max Planck Institute for Ornithology, Seewiesen
Phone: +49 8157 932-437

Email: jschroeder@orn.mpg.de


Dr. Stefan Leitner
Max Planck Institute for Ornithology, Seewiesen
Phone: +49 8157 932-421

Fax: +49 8157 932-209

Email: leitner@orn.mpg.de


Original publication
Julia Schroeder, Shinichi Nakagawa, Mark Rees, Maria Elena Mannarelli, Terry Burke

Reduced fitness in progeny from old parents in a natural population

PNAS

Dr. Julia Schroeder | Max Planck Institute for Ornithology, Seewiesen

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>