Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progeny of old parents have fewer offspring

10.03.2015

Long-term study in house sparrows shows a transgenerational age effect

Reproduction at old age involves risks that may impact ones’ own life and may impose reduced biological fitness on the offspring.


Male house sparrow: any offspring of his produced at an older age will also produce fewer young.

© A.Sanchez-Tojar

Such evidence, previously obtained in humans and other taxa under laboratory conditions, has now been confirmed by researchers from the Max Planck Institute for Ornithology in Seewiesen together with colleagues from the UK and New Zealand for the first time in free-living animals.

In a long-term study on a population of house sparrows they found that offspring of older parents themselves produced fewer young. Such a transgenerational effect is important for the understanding of the evolution of longevity.

Fertility does not decrease in all taxa with increasing age but may remain constant lifelong as is the case of some invertebrates or may even increase with increasing age as in some reptiles. Generally both sexes are able to reproduce at old age, with males capable of producing more offspring than females.

In some mammals such as humans male individuals remain fertile for a longer time compared to females that at some stage enter the menopause. However, reproducing at old age may incur risks such as a higher infant mortality or chromosomal anomalies. Moreover, children of old parents have themselves fewer offspring or have a shorter lifespan, which is commonly known as the “Lansing effect” that was demonstrated not only in humans but also in mice and some invertebrates in the laboratory but never in free living populations.

Julia Schroeder from the Max Planck Institute for Ornithology in Seewiesen has now investigated this effect in a population of house sparrows together with colleagues from the University of Sheffield and the University of Otago in New Zealand. Their study site is a small island off the coast of Devon in Southwestern England where the researchers have monitored and ringed the entire house sparrow population in the course of more than 10 years.

The researchers took blood samples from the parents and their offspring in order to determine genetic parentage. That way they obtained a unique and detailed genetic pedigree of more than 5000 birds with a precise knowledge of the age and the number of offspring for each individual. Birds stayed the entire life on this remote island that is 19 km off the coast.

During 12 years, only four sparrows could genetically not be assigned to parents living on the island, suggesting that these birds were immigrants. To test whether a possible effect is inherited or due to environmental factors entire clutches were systematically cross-fostered.

The analysis revealed a clear result. First, old mothers had a negative effect on the fitness of their daughters, meaning that these daughters produced fewer young. Similarly, older fathers produced sons that had fewer offspring. In particular, this has negative consequences for offspring that resulted from extra-pair matings, as a previous study has shown that house sparrow females seek extra-pair matings preferably with older males. Hence, according to the results of the present study, a female strategy to mate with viable males proves to be disadvantageous.

“Thus, these results cannot be explained by changes of the environment but rather by the constitution of the parents, which changes with increasing age through epigenetic processes. This transgenerational age effect may change the selection pressure on longevity within a population”, says Julia Schroeder, first author of the study. “The results are potentially important for breeding management programs of endangered species that often use old individuals from different populations to maintain genetic variability”, adds the researcher.


Contact

Dr. Julia Schroeder
Research Group Leader

Max Planck Institute for Ornithology, Seewiesen
Phone: +49 8157 932-437

Email: jschroeder@orn.mpg.de


Dr. Stefan Leitner
Max Planck Institute for Ornithology, Seewiesen
Phone: +49 8157 932-421

Fax: +49 8157 932-209

Email: leitner@orn.mpg.de


Original publication
Julia Schroeder, Shinichi Nakagawa, Mark Rees, Maria Elena Mannarelli, Terry Burke

Reduced fitness in progeny from old parents in a natural population

PNAS

Dr. Julia Schroeder | Max Planck Institute for Ornithology, Seewiesen

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>