Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predators predict longevity of birds

05.05.2014

Ageing inevitably occurs both in humans and in other animals. However, life-span varies widely across species.

Researchers of the Max Planck Institute for Ornithology in Seewiesen have now found a possible general mechanism explaining differences in longevity. They investigated life history data of nearly 1400 bird species and found that avian life span varies considerably across the globe, and that much of this variation can be explained by the species’ body mass and clutch size and by the local diversity of predator species. With their data the researchers were able to confirm a key prediction of the classical evolutionary theory of ageing that had been proposed more than 50 years ago.


A pomarine skua (Stercorarius pomarinus) with a male Lapland longspur (Calcarius lapponicus) in its beak (taken at Barrow, Alaska).

© MPIO Seewiesen/ W. Forstmeier

It is well-known that organisms vary widely in life-span. Whereas some fish, turtles or even invertebrates can become hundreds of years old, the neon pygmy goby – a small fish - reaches ripe old age at only 60 days. In birds, variation in life-span extends from parrots such as the Sulphur-crested cockatoo that can become more than 100 years old, to the small Allen’s hummingbird with a maximum life-span of only 4 years, a 25 fold difference. How can this variation be explained?

The classical evolutionary theory of ageing, first proposed by the famous evolutionary biologist George C. Williams over 50 years ago, gives an answer. The theory predicts that high mortality rates in adult animals due to predation, exposure to parasites and other randomly occurring events will be associated with shorter maximum life-spans. This is because under high external mortality most individuals will already be dead (eaten or succumbed to disease) before natural selection can act on rare mutations that cause healthier ageing. The theory has since been further developed and tested in a number of experimental and comparative studies. Yet contradictory results have caused scientists to cast doubt on its validity.

Mihai Valcu and Bart Kempenaers from the Max Planck Institute for Ornithology in Seewiesen together with colleagues from New Zealand and Switzerland have now tested this theory using a comprehensive database on estimates of maximum life-span of 1396 bird species, 1128 from free-living species and 268 from birds kept in captivity. The researchers used a global distribution map of these species, included data on their morphology and reproductive rate, and estimated predation rate.

By means of complex statistical analysis methods they found that in the investigated bird species maximum longevity is negatively related to the number of predator species occurring within the same geographical area. This means that the more predator species are present in the same habitat and the more evenly they are distributed, the lower is the life span of the respective species. This relationship supports the classical theory of ageing, and remains valid when other life history traits known to influence longevity such as body mass and clutch size are included into the statistical model. Indeed, larger species live longer, and those that reproduce fast (lay more eggs) live shorter lives.

Remarkably, the observed pattern showing longer life-spans when fewer predators are present emerges no matter how the analysis was done: at the species level, at a finer regional scale (groups of species within a certain area) or even when comparing entire bioregions. “With our results of a negative relationship between predation pressure and longevity that is largely independent of other key life history traits we were able to confirm the universality of the 50 year old evolutionary theory of ageing on a broad geographical scale” concludes Mihai Valcu, first author of the study. At least in birds, where the necessary data are available for many species, the theory seems to hold.

Weitere Informationen:

http://orn.iwww.mpg.de/3126188/news_publication_8167842?c=2168

Dr. Stefan Leitner | idw - Informationsdienst Wissenschaft

Further reports about: Max-Planck-Institut Ornithology Predators ageing geographical mortality

More articles from Life Sciences:

nachricht More than just a mechanical barrier – epithelial cells actively combat the flu virus
04.05.2016 | Helmholtz-Zentrum für Infektionsforschung

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>