Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Predators predict longevity of birds


Ageing inevitably occurs both in humans and in other animals. However, life-span varies widely across species.

Researchers of the Max Planck Institute for Ornithology in Seewiesen have now found a possible general mechanism explaining differences in longevity. They investigated life history data of nearly 1400 bird species and found that avian life span varies considerably across the globe, and that much of this variation can be explained by the species’ body mass and clutch size and by the local diversity of predator species. With their data the researchers were able to confirm a key prediction of the classical evolutionary theory of ageing that had been proposed more than 50 years ago.

A pomarine skua (Stercorarius pomarinus) with a male Lapland longspur (Calcarius lapponicus) in its beak (taken at Barrow, Alaska).

© MPIO Seewiesen/ W. Forstmeier

It is well-known that organisms vary widely in life-span. Whereas some fish, turtles or even invertebrates can become hundreds of years old, the neon pygmy goby – a small fish - reaches ripe old age at only 60 days. In birds, variation in life-span extends from parrots such as the Sulphur-crested cockatoo that can become more than 100 years old, to the small Allen’s hummingbird with a maximum life-span of only 4 years, a 25 fold difference. How can this variation be explained?

The classical evolutionary theory of ageing, first proposed by the famous evolutionary biologist George C. Williams over 50 years ago, gives an answer. The theory predicts that high mortality rates in adult animals due to predation, exposure to parasites and other randomly occurring events will be associated with shorter maximum life-spans. This is because under high external mortality most individuals will already be dead (eaten or succumbed to disease) before natural selection can act on rare mutations that cause healthier ageing. The theory has since been further developed and tested in a number of experimental and comparative studies. Yet contradictory results have caused scientists to cast doubt on its validity.

Mihai Valcu and Bart Kempenaers from the Max Planck Institute for Ornithology in Seewiesen together with colleagues from New Zealand and Switzerland have now tested this theory using a comprehensive database on estimates of maximum life-span of 1396 bird species, 1128 from free-living species and 268 from birds kept in captivity. The researchers used a global distribution map of these species, included data on their morphology and reproductive rate, and estimated predation rate.

By means of complex statistical analysis methods they found that in the investigated bird species maximum longevity is negatively related to the number of predator species occurring within the same geographical area. This means that the more predator species are present in the same habitat and the more evenly they are distributed, the lower is the life span of the respective species. This relationship supports the classical theory of ageing, and remains valid when other life history traits known to influence longevity such as body mass and clutch size are included into the statistical model. Indeed, larger species live longer, and those that reproduce fast (lay more eggs) live shorter lives.

Remarkably, the observed pattern showing longer life-spans when fewer predators are present emerges no matter how the analysis was done: at the species level, at a finer regional scale (groups of species within a certain area) or even when comparing entire bioregions. “With our results of a negative relationship between predation pressure and longevity that is largely independent of other key life history traits we were able to confirm the universality of the 50 year old evolutionary theory of ageing on a broad geographical scale” concludes Mihai Valcu, first author of the study. At least in birds, where the necessary data are available for many species, the theory seems to hold.

Weitere Informationen:

Dr. Stefan Leitner | idw - Informationsdienst Wissenschaft

Further reports about: Max-Planck-Institut Ornithology Predators ageing geographical mortality

More articles from Life Sciences:

nachricht Understanding a missing link in how antidepressants work
25.11.2015 | Max Planck Institute of Psychiatry, München

nachricht Plant Defense as a Biotech Tool
25.11.2015 | Austrian Centre of Industrial Biotechnology (ACIB)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Harnessing a peptide holds promise for increasing crop yields without more fertilizer

25.11.2015 | Agricultural and Forestry Science

Earth's magnetic field is not about to flip

25.11.2015 | Earth Sciences

Tracking down the 'missing' carbon from the Martian atmosphere

25.11.2015 | Physics and Astronomy

More VideoLinks >>>