Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Panama butterfly migrations linked to El Niño, climate change

07.10.2009
A high-speed chase across the Panama Canal in a Boston Whaler may sound like the beginning of another James Bond film—but the protagonist of this story brandishes a butterfly net and studies the effects of climate change on insect migrations at the Smithsonian Tropical Research Institute.

"Our long-term study shows that El Niño, a global climate pattern, drives Sulfur butterfly migrations," said Robert Srygley, former Smithsonian post doctoral fellow who is now a research ecologist at the US Agricultural Research Service, the chief scientific research agency of the U.S. Department of Agriculture.

Climate change has been linked to changes in the migration of butterflies in North America and Europe but this is one of the first long-term studies of environmental factors driving long-distance migration of tropical butterflies.

For 16 years, Srygley and colleagues tracked the progress of lemony yellow Sulfur butterflies, Aphrissa statira, a species found from Mexico to Brazil, as they migrate across central Panama from Atlantic coastal rainforests to the drier forests of the Pacific coast.

"The El Niño Southern Oscillation—a global climate cycle—turns out to be the primary cause for increases in the plants that the larvae of these butterflies eat. El Niño results in dry, sunny days in Panama, which favor plant growth. When the plants prosper, we see a big jump in the number of Statira Sulfur butterflies."

Peak Sulfur butterfly migrations take place a month after the rainy season begins in Panama. Because butterfly development—from egg to larva to pupa to adult—takes about 22 days in the laboratory, Srygley thinks that these butterflies lay their eggs on new leaves produced by vines only four or five days after the rains begin. His team tracked the production of new leaves by two of the butterflies' host plants for 8 years. Drier years resulted in more new leaves.

The number of migratory butterflies was greatest in El Niño years, with one exception. The El Niño Southern Oscillation is a global-scale climate phenomenon characterized by changes in sea surface temperatures. In Panama, El Niño years have less rainfall during the dry season and higher plant productivity, with the one exception being an unusually wet El Niño year.

El Niño is global in its impact. In deserts and tropical seasonally-dry forests world-wide, a warm tropical Pacific Ocean surface is associated with increased rainfall resulting in seed germination and plant growth. The effects of increased primary productivity cascade upward into higher trophic levels resulting in periodic outbreaks of herbivorous species and migratory activity.

Neotropical wet forests are different because El Niño years are drier, but moderate drought results in increased primary productivity similar to that in desert and tropical dry forests. Thus the lowland forests of Panama fall into a set of habitats encircling the globe in which insect migrations are larger during El Niño years. However the Panamanian wet forest is in a class of forests that have the greatest abundance and diversity of herbivorous insects in the world, "It is like we had seen the tip of the iceberg and suddenly we realize its true size", Srygley suggested. The authors predict widespread insect migrations during El Nino years.

According to Srygley, "Understanding how global climate cycles and local weather influence tropical insect migrations should ultimately improve our ability to predict insect movements and effects such as crop damage."

This research is presented in the journal Global Change Biology and was conducted with support from the Smithsonian Institution and the National Geographic Society Committee for Research and Exploration. Research permits were provided by Panama's National Environmental Authority, ANAM, and meteorological data by the Panama Canal Authority, ACP, and the Terrrestrial-Environmental Science Program of the Smithsonian Tropical Research Institute.

STRI, headquartered in Panama City, Panama, is a unit of the Smithsonian Institution. The institute furthers the understanding of tropical nature and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems.

Beth King | EurekAlert!
Further information:
http://www.si.edu
http://www.stri.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>