Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Panama butterfly migrations linked to El Niño, climate change

07.10.2009
A high-speed chase across the Panama Canal in a Boston Whaler may sound like the beginning of another James Bond film—but the protagonist of this story brandishes a butterfly net and studies the effects of climate change on insect migrations at the Smithsonian Tropical Research Institute.

"Our long-term study shows that El Niño, a global climate pattern, drives Sulfur butterfly migrations," said Robert Srygley, former Smithsonian post doctoral fellow who is now a research ecologist at the US Agricultural Research Service, the chief scientific research agency of the U.S. Department of Agriculture.

Climate change has been linked to changes in the migration of butterflies in North America and Europe but this is one of the first long-term studies of environmental factors driving long-distance migration of tropical butterflies.

For 16 years, Srygley and colleagues tracked the progress of lemony yellow Sulfur butterflies, Aphrissa statira, a species found from Mexico to Brazil, as they migrate across central Panama from Atlantic coastal rainforests to the drier forests of the Pacific coast.

"The El Niño Southern Oscillation—a global climate cycle—turns out to be the primary cause for increases in the plants that the larvae of these butterflies eat. El Niño results in dry, sunny days in Panama, which favor plant growth. When the plants prosper, we see a big jump in the number of Statira Sulfur butterflies."

Peak Sulfur butterfly migrations take place a month after the rainy season begins in Panama. Because butterfly development—from egg to larva to pupa to adult—takes about 22 days in the laboratory, Srygley thinks that these butterflies lay their eggs on new leaves produced by vines only four or five days after the rains begin. His team tracked the production of new leaves by two of the butterflies' host plants for 8 years. Drier years resulted in more new leaves.

The number of migratory butterflies was greatest in El Niño years, with one exception. The El Niño Southern Oscillation is a global-scale climate phenomenon characterized by changes in sea surface temperatures. In Panama, El Niño years have less rainfall during the dry season and higher plant productivity, with the one exception being an unusually wet El Niño year.

El Niño is global in its impact. In deserts and tropical seasonally-dry forests world-wide, a warm tropical Pacific Ocean surface is associated with increased rainfall resulting in seed germination and plant growth. The effects of increased primary productivity cascade upward into higher trophic levels resulting in periodic outbreaks of herbivorous species and migratory activity.

Neotropical wet forests are different because El Niño years are drier, but moderate drought results in increased primary productivity similar to that in desert and tropical dry forests. Thus the lowland forests of Panama fall into a set of habitats encircling the globe in which insect migrations are larger during El Niño years. However the Panamanian wet forest is in a class of forests that have the greatest abundance and diversity of herbivorous insects in the world, "It is like we had seen the tip of the iceberg and suddenly we realize its true size", Srygley suggested. The authors predict widespread insect migrations during El Nino years.

According to Srygley, "Understanding how global climate cycles and local weather influence tropical insect migrations should ultimately improve our ability to predict insect movements and effects such as crop damage."

This research is presented in the journal Global Change Biology and was conducted with support from the Smithsonian Institution and the National Geographic Society Committee for Research and Exploration. Research permits were provided by Panama's National Environmental Authority, ANAM, and meteorological data by the Panama Canal Authority, ACP, and the Terrrestrial-Environmental Science Program of the Smithsonian Tropical Research Institute.

STRI, headquartered in Panama City, Panama, is a unit of the Smithsonian Institution. The institute furthers the understanding of tropical nature and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems.

Beth King | EurekAlert!
Further information:
http://www.si.edu
http://www.stri.org

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>