Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New paints prevent fouling of ships’ hulls

11.06.2012
The colonisation of hulls by algae, barnacles, mussels and other organisms is a major problem for both pleasure boats and merchant tonnage.
In a joint project, researchers at the University of Gothenburg and Chalmers University of Technology, Sweden, have developed new environmentally-friendly and effective bottom paints to prevent this.

Fouling is a major problem, leading to higher fuel consumption and so increased air pollution. It can also cause the spread of alien species that do not belong in the local marine environment.

Effective biocides found
Researchers at the University of Gothenburg and Chalmers University of Technology have spent nine years developing new environmentally-friendly and effective antifouling paints through a joint research programme called Marine Paint.

The focus has been on a substance called medetomidine, which has proved highly effective against barnacles, considered to be the most problematic fouling organism.

To tackle other types of fouling as well (such as algae, mussels, sea squirts and moss animals), the researchers have developed a concept for producing optimised combinations of different antifouling agents, or biocides.
The idea behind these optimised blends is to combine many different biocides that are effective against different fouling organisms, and adjust the balance between them to eliminate all types of fouling.

To produce the recipes for these optimised blends, the researchers have also developed a model system where they weigh the effect of different biocides on different fouling organisms against their expected environmental risk. The blends are all equally effective but offer different levels of expected environmental risk.

Hi-tech paints
These optimised blends have been combined with hi-tech paint systems based on microcapsules – microscopic capsules made out of a polymer material which slowly release the biocides from the paint into the water.

Adult barnacles on a cliff.
Photo: University of Gothenburg


The larva of a barnacle, examining a surface.
Photo: University of Gothenburg

Field trials of painted test panels at the Sven Lovén Centre for Marine Sciences in Kristineberg have shown that the concept of optimised antifouling blends in bottom paints works very well.

Marine Paint’s research results for medetomidine have been passed to the commercial partner I-Tech AB to ensure that they are put into practice, and the product is now being marketed under the name Selektope.

Marine Paint has been hosting a conference in Gothenburg on 14-15 May 2012 and presentED its results and placeD them in a wider context, with speakers and participants representing universities, colleges, industry, authorities, shipping companies, leisure boat owners and other interested parties, primarily from Sweden and Europe.
Summaries of the workshop presentations will be made available on Marie Paint’s wbsite www.marinepaint.se

The Marine Paint research programme was funded by the Mistra Foundation for Strategic Environmental Research from 2003 to 2011.

For more information, please contact: Programme director Thomas Backhaus
Telephone: +46 (0)31 786 2734
E-mail: thomas.backhaus@bioenv.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>