Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

p53 cuts off invading cancer cells

24.03.2014

The tumor suppressor p53 does all it can to prevent oncogenes from transforming normal cells into tumor cells by killing defective cells or causing them to become inactive.


Tumor cells expressing p53 (left) have fewer focal adhesions (red) and lower levels of active p130Cas (green)—rendering them noninvasive—compared with p53-deficient tumor cells (right).

Credit: Yamauchi et al., 2014

Sometimes oncogenes manage to initiate tumor development in the presence of p53, but, even then, the tumor suppressor doesn't give up and focuses its efforts instead on limiting the tumor's ability to invade and metastasize. A study in The Journal of Cell Biology uncovers one way that p53 acts to prevent cancer cell invasion.

A team of researchers, led by Keiko Kawauchi from the Mechanobiology Institute at the National University of Singapore, studied cells that had been transformed into cancer cells by Ras, the most common oncogene in human cancer.

They compared Ras-transformed cells with and without p53 and observed that those expressing p53 were less invasive and formed fewer focal adhesions, the molecular linkages that connect the structural scaffolding within the cell to the extracellular matrix that surrounds the cell.

The researchers found that p53 limits invasion by initiating a chain of events that ultimately prevents the formation of lamellipodia, cell membrane protrusions that spur cell movement and invasion. p53 activates a mitochondrial protease called Omi, which is then released into the cytosol of the cell when Ras causes mitochondria to fragment.

Omi cleaves actin filaments in the cytoskeleton, and the decrease in actin suppresses the activity of p130Cas, a focal adhesion signaling protein that promotes the formation of lamellipodia. With low levels of active p130Cas, cells don't form lamellipodia and are therefore less able to invade.

"Actin remodeling is a signal that prevents cell invasion," explains Kawauchi. "Most research has focused on how p53 prevents metastasis by regulating epithelial-to-mesenchymal transitions," a biological process by which cells gain migratory and invasive properties. In contrast, says Kawauchi, the new findings help explain how p53 affects the cytoskeletal processes within the cell that drive invasion.

###

Yamauchi, S., et al. 2014. J. Cell Biol. doi:10.1083/jcb.201309107

About The Journal of Cell Biology

The Journal of Cell Biology (JCB) is published by The Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works, and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit http://www.jcb.org.

Research reported in the press release was supported by the National Research Foundation, Singapore; the Ministry of Education, Singapore; and the Kurata Memorial Hitachi Science and Technology Foundation, Japan.

Rita Sullivan King |

Further reports about: Biology Cell Metastasis Rockefeller biological process invade invasive p53

More articles from Life Sciences:

nachricht Over-organizing repair cells set the stage for fibrosis
20.10.2014 | Rockefeller University Press

nachricht ‘Red Effect’ sparks interest in female monkeys
20.10.2014 | University of Rochester

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Battery Conference April 2015 in Aachen

16.10.2014 | Event News

Experts discuss new developments in the field of stem cell research and cell therapy

10.10.2014 | Event News

Zoonoses: Global collaboration is more important than ever

07.10.2014 | Event News

 
Latest News

Siemens wins major HVDC order in Canada

20.10.2014 | Press release

Hubble Finds Extremely Distant Galaxy through Cosmic Magnifying Glass

20.10.2014 | Physics and Astronomy

Rapid agent restores pleasure-seeking ahead of other antidepressant action

20.10.2014 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>