Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OU research team finds a common bioindicator resistant to insecticides

29.10.2013
In a novel study, a University of Oklahoma researcher and collaborators found a common bioindicator, Hyalella azteca, used to test the toxicity of water or sediment was resistant to insecticides used in agricultural areas of central California.

The study is the first to demonstrate that the indicator species may adapt to polluted conditions of a habitat and become an entirely unreliable source of information about ecosystem health.

Gary Wellborn, professor of biology in the OU College of Arts and Sciences and director of the Oklahoma Biological Station; Donald P. Weston, University of California, Berkeley; and Helen C. Poyton, University of Massachusetts, Boston; tested cultures in the laboratory and water samples from California lakes, ponds and streams. The Hyalella amphipods are aquatic crustaceans commonly used by scientists and agencies as an indicator species of a healthy, unpolluted environment.

"Our study documented the specific genetic changes that allow the amphipods to survive at 500-times the normal lethal dose of the pesticide," says Wellborn. "The results have far-reaching implications for biomonitoring programs that rely on H. azteca as a bioindicator. H. azteca, a species common across North America, may prove to be an unreliable indicator in other agricultural states where biomonitoring programs use H. azteca as a principal species for monitoring and environmental policy decisions."

Insecticides for agricultural crops are regulated by the Environmental Protection Agency, but runoff during rains can enter a lake, pond or stream and contaminate a non-target species, like H. azteca. The evolution of H. azteca in this study occurred when the species mutated and adapted to the widely used pyrethroid insecticides—a principle known as adaptive evolution. As reported in this study, the resistant H. azteca was no longer reliable as a bioindicator when used to test the toxicity of water and sediment.

A technical article on this study was published in the October 8, 2013 issue of the Proceedings of the National Academy of Sciences. For more information about this study, please contact Gary Wellborn at gwellborn@ou.edu.

Jana Smith | EurekAlert!
Further information:
http://www.ou.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>